On the selective properties of nanoscale bifurcation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/9

On the selective properties of nanoscale bifurcation

The motion of molecules and atoms in the space filled with spherical carbon nanoparticles is studied in the framework of Newtonian dynamics. The analytical distribution for a centrally symmetric potential of the molecule-nanoparticle interaction is essentially used in the numerical solution of the problem. Consideration of the process is based on the analysis of selective properties of the material composed of the particles with respect to separation of methane-helium mixtures. The features of the passage of molecules (atoms) through a nanoscale bifurcation are considered. Calculated results show that the mass of carbon structure atoms accumulating in the immediate vicinity of branching makes the system impassable for methane molecules. At the same time, for helium atoms, the bifurcation remains permeable. A certain ratio of the pore size to the particle size provides separating properties of the material composed of compacted carbon nanoparticles.

Download file
Counter downloads: 199

Keywords

наночастицы, потенциал Леннарда-Джонса, молекулярная динамика, бифуркация, селективность, метан, гелий, nanoparticles, Lennard-Jones potential, molecular dynamics, bifurcation, selectivity, methane, helium

Authors

NameOrganizationE-mail
Bubenchikov Mikhail A.Tomsk State Universitymichael121@mail.ru
Ukolov Anton V.Tomsk State UniversityUkolov33@gmail.com
Ukolov Roman Yu.Tomsk State Universityroman_ukolov@bk.ru
Jambaa SoninbayarTomsk State University; Mongolian National Universityjsoninbayar@yahoo.com
Всего: 4

References

Vu D.Q., Koros W.J., Viller S.J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results // J. Membr. Sci. 2003. V. 211. P. 311-334. DOI: 10.1016/S0376-7388(02)00429-5.
Baker R. Membrane technology and applications. 2nd ed. Wiley, 2004. 538 p. DOI: 10.1002/0470020393
Wallace D.W., Staudt-Bickel C., Koros W.J. Efficient development of effective hollow fiber membranes for gas separations from novel polymers // J. Membr. Sci. 2006. V. 278. P. 92-104. DOI: 10.1016/j.memsci.2005.11.001.
Javaid A. Membranes for solubility-based gas separation applications // Chem. Eng. J. 2005. V. 112. P. 219-226. DOI: 10.1016/j.cej.2005.07.010.
Membrane Handbook / ed. by W.S. Winston Ho, K.K. Silkar. New York, London, 1992. 886 p. DOI: 10.1007/978-1-4615-3548-5.
Alders M., Winterhalder D., Wessling M. Helium recovery using membrane processes // Separation and Purification Technology 2017. V. 189. P. 433-440. DOI: 10.1016/j.seppur. 2017.07.084.
Ko D. Optimization of hollow fiber membrane modules to sequester carbon dioxide // J. Membr. Sci. 2018. V. 546. P. 270-283. DOI: 10.1016/j.memsci.2017.09.039.
Qi R., Henson M. Membrane system design for multicomponent gas mixtures via mixed-integer nonlinear programming // Computers and Chemical Engineering. 2000. V. 24. P. 2719-2737. DOI: 10.1016/S0098-1354(00)00625-6.
Labadini H., Al-Enezi G., Ettouney H. Optimization of module configuration in membrane gas separation // J. Membr. Sci. 1996. V. 112 (2). P. 185-197. DOI: 10.1016/0376-7388(95) 00283-9
Zhang D., Wang H., Li C., Meng H. Modeling of purge-gas recovery using membrane separation // Chemical Engineering Research and Design. 2017. V. 125. P. 361-366. DOI: 10.1016/j.cherd.2017.07.002
Saeidi S., Fazlollahi F., Najari S., Iranshahi D., Klemes J., Baxter L. Hydrogen production: Perspectives, separation with special emphasis on kinetics of WGS reaction: A state-of-the-art review // J. Industrial and Engineering Chemistry 2017. V. 49. P. 1-25. DOI: 10.1016/j.jiec.2016.12.003.
Orlov A., Ushakov A., Sovach V. Mathematical Model of Nonstationary Separation Processes Proceeding in the Cascade of Gas Centrifuges in the Process of Separation of Multicomponent Isotope Mixtures // J. Engineering Physics and Thermophysics 2017. V. 90 (2). P. 258-265. DOI: 10.1007/s10891-017-1563-4.
Pirouzfar V., Omidkhah M. Mathematical modeling and optimization of gas transport through carbon molecular sieve membrane and determining the model parameters using genetic algorithm // Iranian Polymer J. (English Edition). 2016. V. 25 (3). P. 203-212. DOI: 10.1007/s13726-016-0414-z.
Saberi M., Hashemifard S., Dadkhah A. Modeling of CO2/CH4 gas mixture permeation and CO2 induced plasticization through an asymmetric cellulose acetate membrane // RSC Advances. 2016. V. 6 (20). P. 16561-16567. DOI: 10.1039/C5RA23506E.
Kadioglu O., Keskin S. Efficient separation of helium from methane using MOF membranes// Separation and Purification Technology 2018. V. 191. P. 192-199. DOI: 10.1016/j.seppur. 2017.09.031.
Rufford T., Chan K., Huang S., May E. A review of conventional and emerging process technologies for the recovery of helium from natural gas // Adsorption Science and Technology 2014. V. 32 (1). P. 49-72. DOI: 10.1260/0263-6174.32.1.49.
Scholes C., Ghosh U. Review of membranes for helium separation and purification // Membranes. 2017. V. 7 (1). Ar. № 9. DOI: 10.3390/membranes7010009.
Scholes C., Ghosh U. Helium separation through polymeric membranes: selectivity targets // J. Membr. Sci. 2016. V. 520. P. 221-230. DOI: 10.1016/j.memsci.2016. 07.064.
Vaezi M., Bayat Y., Babaluo A., Shafiei S. Separation of helium from gases using the synthesized hydroxy sodalite membrane // Scientia Iranica. 2016. V. 23 (3). P. 1136-1143. DOI: 10.24200/SCI.2016.3884.
Hu W., Wu X., Li Z., Yang J. Helium separation via porous silicene based ultimate membrane // Nanoscale 2013. V. 5 (19). P. 9062-9066. DOI: 10.1039/c3nr02326e.
Abdul Wasy Zia, Zhifeng Zhou, Lawrence Kwok-Yan Li, A new approach to create isolated carbon particles by sputtering: A detailed parametric study and a concept of carbon particles embedded carbon coatings // Diamond and Related Materials. 2017. V. 76. P. 97-107. ISSN 0925-9635. DOI: 10.1016/j.diamond.2017.04.014.
Serene Wen Ling Ng, Gamze Yilmaz, Wei Li Ong, Ghim Wei Ho. One-step activation towards spontaneous etching of hollow and hierarchical porous carbon nanospheres for enhanced pollutant adsorption and energy storage // Applied Catalysis B: Environmental. V. 220. 2018. P. 533-541. ISSN 0926-3373. DOI: 10.1016/j.apcatb.2017.08.069.
You B., Yang J., Sun Y., Su Q. Easy synthesis of hollow core, bimodal mesoporous shell carbon nanospheres and their application in supercapacitor // Chem. Commun. 2011. V. 47. P. 12364-12366. DOI: 10.1039/C1CC15348J.
Cao J., Zhu Y., ShiL., Zhu L., Bao K., Liu S., Qian Y. Double-shelled Mn2O3 hollow spheres and their application in water treatment // Eur. J. Inorg. Chem. 2010 (2010). P. 1172-1176. DOI: 10.1002/ejic.200901116.
Zang Z., Wen M., Chen W., Zeng Y., Zu Z., ZengX., TangX. Strong yellow emission of ZnO hollow nanospheres fabricated using polystyrene spheres as templates // Mater. Des. 2015. V. 84. P. 418-421. DOI: 10.1016/j.matdes.2015.06.141.
Zhang Z., Qin M., Jia B., Zhang H., Wu H., Qu X. Facile synthesis of novel bowl-like hollow carbon spheres by the combination of hydrothermal carbonization and soft templating // Chem. Commun. 2017. V. 53. P. 2922-2925. DOI: 10.1039/C7CC00219J.
Sasidharan M., Gunawardhana N., Senthil C., Yoshio M. Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries // J. Mater. Chem. A. 2014. No. 2. P. 7337. DOI: 10.1039/C3TA14937D.
Liu J., Yang T, Wang D.W., Lu G.Q., Zhao D., Qiao S.Z. A facile soft-template synthesis of mesoporous polymeric and carbonaceous nanospheres // Nat. Commun. 2013. No. 4. DOI: 10.1038/ncomms3798.
Бубенчиков М.А. Об идеальных колебаниях нанотрубок в естественном магнитном поле // Вестник Томского государственного университета. Математика и механика. 2010. № 2 (10). С. 45-52.
Бубенчиков М.А. Движение нанотрубок в воздушной среде под воздействием электромагнитного поля // Вестник Томского государственного университета. Математика и механика. 2010. № 4 (12). С. 68-77.
Бубенчиков М.А. Расчет аэродинамики циклонной камеры // Вестник Томского государственного университета. Математика и механика. 2011. № 1(13). С. 67-73.
Бубенчиков М.А. Способ минимизации схемной диффузии в численной модели аэродинамики // Вестник ТГУ. Математика и механика. 2011. № 2 (14). С. 79-84.
Бубенчиков М.А. Механическое сопротивление компактных наночастиц в воздушной среде // Изв. вузов. Физика. 2011. № 1. С. 92-96.
Бубенчиков М.А., Потекаев А.И. Седиментация наночастиц в поле центробежных сил // Изв. вузов. Физика. 2011. № 2. С. 74-80.
Бубенчиков М.А. Движение частиц ксенона в циклонной камере // Вестник Томского государственного университета. Математика и механика. 2012. № 1 (17). С. 61 -67.
Бубенчиков М.А. Двухфазная фильтрация в анизотропном пространстве // Вестник Томского государственного университета. Математика и механика. 2013. № 6 (26). С. 70-78.
Бубенчиков М.А. Математическая модель динамики электролита в магнитном поле // Вестник Томского государственного университета. Математика и механика. 2008. № 2 (3). С. 72-86.
Бубенчиков М.А. Движение углеродных нанотрубок в поле градиента температуры // Вестник Томского государственного университета. Математика и механика. 2014. № 4 (30). С. 63-70.
Бубенчиков М.А. Проницаемость туннеля из сферических наночастиц // Вестник Томского государственного университета. Математика и механика. 2014. № 5 (31). С. 69-75.
Бубенчиков М.А. О решении нестационарного уравнения Шредингера // Вестник Томского государственного университета. Математика и механика. 2016. № 5 (43). С. 28-34. DOI: 10.17223/19988621/433/3.
Rudyak V.Ya., Krasnolutskii S.L. The calculation and measurements of nanoparticles diffusion coefficient in rarefied gases // J. Aerosol Science. 2003. V. 34. Suppl. 1. P. 579-580. DOI: 10.1016/S0021-8502(03)00148-4.
Глушко В.П. Термодинамические и теплофизические свойства продуктов сгорания. Т. 1. М., 1971. 263 с.
Справочник химика. Т. 1. / под ред. Б.П. Никольского. М.; Л.: Химия, 1982. 1072 с.
 On the selective properties of nanoscale bifurcation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/9

On the selective properties of nanoscale bifurcation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 51. DOI: 10.17223/19988621/51/9

Download full-text version
Counter downloads: 618