On an extremal problem for nonoverlapping domains | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 52. DOI: 10.17223/19988621/52/2

On an extremal problem for nonoverlapping domains

The paper considers the problem of finding the range of the functional I = J(f (z0), f (z0), F (Z0), F (Z 0)) defined on the class M of functions pairs (f(z),F(Z)) that are univalent in the system of the disk and the interior of the disk, using the method of internal variations. We establish that the range of this functional is bounded by the curve whose equation is written in terms of elliptic integrals, depending on the parameters of the functional I.

Download file
Counter downloads: 292

Keywords

Method of internal variations, Univalent function, Nonoverlapping domains, Functional range, Elliptic integrals, метод внутренних вариаций, однолистные функции, неналегающие области, множество значений функционала, эллиптические интегралы

Authors

NameOrganizationE-mail
Pchelintsev Evgeny A.Tomsk State Universityevgen-pch@yandex.ru
Pchelintsev Valerii A.Tomsk Polytechnic Universityvpchelintsev@vtomske.ru
Всего: 2

References

Lavrentiev M.A. (1934) K teorii konformnykh otobrazheniy [On the theory of conformal mappings]. Trudy Matematicheskogo Instituta imeni V.A. Steklova - Proceedings of the Steklov Institute of Mathematics. 5. pp. 159-245 (Translated in A.M.S. Translations, 122, pp. 1-63 (1984)).
Goluzin G.M. (1969) Geometric Theory of Functions of a Complex Variable. Amer. Math. Soc., Providence.
Jenkins J.A. (1958) Univalent Functions and Conformal Mapping. Berlin; Gottingen; Heidelberg: Springer Verlag.
Nehari Z. (1953) Some inequalities in the theory of functions. Trans. Amer. Math. Soc. 75(2). pp. 256-286.
Lebedev N.A. (1957) Ob oblasti znacheniy odnogo funktsionala v zadache o nenalegayushchikh oblastyakh [On the range of the restriction of a functional on nonoverlapping domains]. Dokl. Akad. NaukSSSR. 115(6). pp.1070-1073.
Duren P.L., Schiffer M.M. (1988) Conformal Mappings onto Nonoverlapping Regions. Hersch J., Huber A. (eds) Complex Analysis. Birkhauser Basel. pp. 27-39. DOI: https://doi.org/10.1007/978-3-0348-9158-5_3.
Kuhnau R. (1971) Uber zwei Klassen schlichter konformer Abbildungen Math. Nachr. 49(1-6). pp. 173-185.
Bakhtin A. K., Bakhtina G. P., Zelinskii Yu. B. (2008) Topologo-algebraicheskie struktury i geometricheskie metody v kompleksnom analize [Topological-algebraic structures and geometric methods in complex analysis]. Proceedings of the Institute of Mathematics of NAS of Ukraine. 73. p. 308 (in Russian).
Andreev V.A. (1976) Some problems on nonoverlapping domains. Siberian Math. J. 17(3). pp. 373-386.
Pchelintsev V.A. (2012) On a problem of nonoverlapping domains. Siberian Math. J. 53(6). pp. 1119-1127.
Alexandrov I.A. (1976) Parametricheskie prodolzheniya v teorii odnolistnykh funktsiy [Parametric continuations in the theory of univalent functions]. Moscow: Nauka.
Schaeffer A.C., Spencer D.C. (1950) Coefficient regions for schlicht functions. Amer. Math. Soc. Coll. Publ. 35. New York.
Ulina G.V. (1960) Ob oblastyakh znacheniy nekotorykh sistem funktsionalov v klassakh odnolistnykh funktsiy [On the range of some functional systems in classes of univalent functions]. Vestn. Leningr. un-ta. Matem., mekhan. i astr. - Vestnik Leningrad. Univ. Mathematics, Mechanics and Astronomy. 1(1). pp. 35-54.
Lebedev N.A. (1955) Mazhorantnaya oblast' dlya vyrazheniya I=ln{[f'(z)]"/[f(z)]} v klasse S [The majorant domain for the expression I=ln{zл[/'(z)]1-^/[f(z)]} intheclass S]. Vestn. Leningr. un-ta. Matem., fiz. i khim. - Vestnik Leningrad. Univ.Mathematics, physycs and chemistry. 3(8). pp. 29-41.
Schiffer M. (1943) Variation of the Green function and theory of the p-valued functions. Amer. J. Math. 65. pp. 341-360
Pchelintsev V.A., Pchelintsev E.A. (2015) On the range of one complexvalued functional. Siberian Math. J. 56(5). pp. 922-928.
Golubev V.V. (1950) Lekcii po analiticheskoj teorii differencial'nyh uravnenij [Lectures on the Analytic Theory of Differential Equations]. Moscow; Leningrad: GITTL.
Gradshtein I.S. and Ryzhik I.M. (1994). Tables of Integrals, Sums, Series and Product. Boston: Academic Press.
 On an extremal problem for nonoverlapping domains | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 52. DOI: 10.17223/19988621/52/2

On an extremal problem for nonoverlapping domains | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 52. DOI: 10.17223/19988621/52/2

Download full-text version
Counter downloads: 537