Investigation of a plastic deformation inhomogeneity and failure of the corrosion-resistant bimetal under uniaxial tension
This paper is aimed to study particularities of the plastic deformation and fracture of bimetal composition based on the compound of carbon steel and high-chromium stainless steel exposed to a uniaxial tension in aggressive hydrogen-containing medium. The investigation of microstructure in a region of bimetal compounds is carried out by optical microscopy. A detailed macro-scale study of the patterns of plastic flow localization was carried out using the DIC method. Bimetal plastic deformation arises from the nucleation of stress concentration in the bimetal transition area. In the basic layer, localized deformation areas propagate along a bimetal axis with different velocity. Cladding layer does not suppress the formation of localized deformation areas in the basic layer. As a result of 6-hour electrolytic hydrogenation, the strength of bimetal has decreased insignificantly while its plasticity has increased. The fracture of the samples after hydrogenation is more ductile as compared with that of primary material. In this study, it was found that the localized plastic deformation areas are formed and evolve during the tension of 301 bimetal samples as in the initial state 1 and after 6-hour electrolytic hydrogenation throughout the plastic flow in the primary, protective, and transitional layers of bimetal.
Keywords
локализация деформации,
пластическое течение,
корреляция цифровых спекл-изображений,
водородное охрупчивание,
сталь,
deformation localization,
plastic flow,
digital image correlation,
hydrogen embrittlement,
steelAuthors
Barannikova Svetiana A. | Institute of Strength Physics and Materials Science SB RAS; Tomsk State University | bsa@ispms.tsc.ru |
Li Yuiiya V. | Institute of Strength Physics and Materials Science SB RAS | jul2207@mail.ru |
Zuev Lev B. | Institute of Strength Physics and Materials Science SB RAS; Tomsk State University | lbz@ispms.ru |
Всего: 3
References
Mudrock R.N., Lebyodkin M.A., Kurath P., et al. Strainrate fluctuations during macroscopically uniform deformation of a solution-strengthened alloy // Scr. Mater. 2011. V. 65. P. 1093-1096. DOI: 1093-95. 10.1016/j.scriptamat.2011.09.025.
Tretiakova T.V., Vildeman V.E. Relay-race deformation mechanism during uniaxial tension of cylindrical samples of carbon steel: using digital image correlation technique // Fratt. Integ. Strut. 2013. V. 24. P. 1-6. DOI: 10.3221/IGF-ESIS.24.01.
Баранникова С.А. Локализация деформации растяжения в монокристаллах легированного Y-Fe с углеродом // ЖТФ. 2000. Т. 70. С. 138-140.
Zuev L.B., Barannikova S.A. Experimental study of plastic flow macro-scale localization process: pattern, propagation rate, dispersion // Int. J. Mec. Sci. 2014. V. 88. P. 1-7. DOI: 10.1016/j.ijmecsci.2014.06.012.
Баранникова С.А. Дисперсия волн локализации пластической деформации // Письма в ЖТФ. 2004. Т. 8. С. 75-80.
Sallam H.E.M., El-Aziz Kh. Abd., El-Raouf H. Abd, et al. Failure analysis and flexural behavior of high chromium white cast iron and AISI4140 Steel bimetal beams // Mater. Des. 2013. V. 52. P. 974-980.
Chen I., Yang Z., Jhan B., Xia J., et al. Clad metals, roll bonding and their applications for SOFC interconnects // J. Power Sources. 2005. V. 152. P. 40-45. DOI: 10.1016/j.jpowsour. 2005.01.055.
Jin J.Y. Hong S.I. Effect of heat treatment on tensile deformation characteristics and properties of Al 3003/STS 439 clad composite // Mater. Sci. Eng. 2014. P. 1-8. DOI: 10.1016/j.msea.2013.12.019.
Lee J.E., Bae D.H., Chung W.S., et al. Effects of annealing on the mechanical and interface properties of stainless steel/aluminum/copper cladmetal sheets // J. Mater. Process. Technol. 2007. V. 187-188. P. 546-549. DOI: 10.1016/j.jmatprotec.2006.11.121.
Ramunni V.P., Paiva Coelho T. De., de Miranda P.E.V. Interaction of hydrogen with the microstructure of low-carbon steel // Mater. Sci. Eng. 2006. V. A 435-436. P. 504-514. DOI: 10.1016/j.msea.2006.07.089.
Sofronis P., Liang Y., Aravas N. Hydrogen induced shear localization of plastic flow in metals and alloys // Eur. J. Mech. A: Solids. 2001. V. 20. P. 857-872. DOI: 10.1016/S0997-7538(01)01179-2.
Robertson I.M. The effect of hydrogen on dislocation dynamics // Eng. Frac. Mech. 2001. V. 68. P. 671-692. DOI: 10.1016/S0013-7944(01)00011-X.
Yagodzinskyy Y., Saukkonen T., Kilpelainen S., et al. Effect of hydrogen on plastic strain localization in single crystals of austenitic stainless steel // Scripta Mater. 2010. V. 62. P. 155-158. DOI: 10.1016/j.scriptamat.2009.10.005.
Баранникова С.А., Надежкин М.В., Мельничук В.А., Зуев Л.Б. О локализации пластической деформации растяжения монокристаллов аустенитной стали, электролитически насыщенных водородом // Письма в ЖТФ. 2004. Т. 37. С. 9-17.
Zuev L.B., Gorbatenko V.V., Pavlichev K.V. Elaboration of speckle photography techniques for plastic flow analyses // Measur. Sci. & Technol. 2010. V. 21(054014). P. 1-5.