Group of automorphisms of one class of formal matrix algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/2

Group of automorphisms of one class of formal matrix algebras

The structure of the automorphism group of a formal matrix algebra over a commutative ring has been found under certain conditions. The automorphism group of such algebra is a semidirect product of several subgroups consisting of automorphisms with a known structure. This is achieved due to the fact that the formal matrix algebra is represented as a splitting extension of a certain nilpotent ideal by means of the product of ordinary matrix rings.

Download file
Counter downloads: 210

Keywords

автоморфизм, алгебра формальных матриц, полупрямое произведение, automorphism, formal matrix algebra, semidirect product

Authors

NameOrganizationE-mail
Krylov Piotr A.Tomsk State Universitykrylov@math.tsu.ru
Norbosambuev Tsyrendorji D.Tomsk State UniversityNsTsdDts@yandex.ru
Всего: 2

References

Anh P.N., van Wyk L. Automorphism group of generalized triangular matrix rings // Linear Algebra Appl. 2011. V. 434. No. 4. P. 1018-1026. doi:10.1016/j.laa.2010.10.007.
Anh P.N., van Wyk L. Isomorphisms between strongly triangular matrix rings // Linear Algebra Appl. 2013. V. 438. No. 11. P. 4374-4481. https://doi.org/10.1016/j.laa.2013.01.030.
Khazal K., Dascalescu S., van Wyk L. Isomorphism of generalized triangular matrix rings and recovery of tiles // Int. J. Math. Sci. 2003. No. 9. P. 533-538. http://dx.doi.org/10.1155/ S0161171203205251.
Boboc C., Dascalescu S., van Wyk L. Isomorphisms between Morita context rings // Linear and Multilinear Algebra. 2012. V. 60. No. 5. P. 545-563. https://doi.org/10.1080/03081087. 2011.611946.
Kezlan T.P. A note on algebra automorphisms of triangular matrices over commutative rings // Linear Algebra Appl. 1990. V. 135. P. 181-184. https://doi.org/10.1016/0024-3795(90)90121-R.
Tang G., Li Ch., Zhou Y. Study of Morita contexts // Comm. Algebra. 2014. V. 42. P. 16681681. https://doi.org/10.1080/00927872.2012.748327.
Крылов П.А. Об изоморфизме колец обобщенных матриц // Алгебра и логика. 2008. Т. 47. № 4. С. 456-463. https://doi.org/10.1007/s10469-008-9016-y.
Абызов А.Н., Тапкин Д.Т. Кольца формальных матриц и их изоморфизмы // Сиб. матем. журн. 2015. Т. 56. № 6. С. 1199-1214. https://doi.org/10.17377/smzh.2015.56.601.
Крылов П.А., Туганбаев А.А. Кольца формальных матриц и модули над ними. М.: МЦНМО, 2017.
Krylov P., Tuganbaev A. Formal matrices. Algebra and Applications. V. 23. Springer, 2017. 10.1007/978-3-319-53907-2.
 Group of automorphisms of one class of formal matrix algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/2

Group of automorphisms of one class of formal matrix algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/2

Download full-text version
Counter downloads: 1230