On first Baire class functions defined on some classes of nonmetrizable spaces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/4

On first Baire class functions defined on some classes of nonmetrizable spaces

For first Baire class functions given on Polish spaces, Baire's and Lebesgue's criteria are known. We prove analogs of these theorems for topological spaces that are both hereditarily Lindelof and hereditarily Baire spaces. An analogue of Lebesgue's theorem is as follows: let a space X be a hereditarily Lindelof space and a function f : X ^ К . A function f is a first Baire class function if and only if the inverse image of an open set in K. has type Fc . The necessity of the following theorem is true for hereditarily Baire spaces and the proof uses the concept of cliquish functions. We affirm that sufficiency is true for hereditarily Lindelof spaces. An analogue of Baire's theorem is as follows: let X be a hereditarily Lindelof and hereditarily Baire space. A function f : X ^ К belongs to the set of first Baire class functions if and only if for any non-empty closed subset F the function f |F has a point of continuity. For a subset A of the real line K., a modification of the Sorgenfrey line S denoted as SA is defined as follows: neighborhoods of points from A are given by neighborhoods of the right half-open topology, and those in the complement of A are given by neighborhoods of the left half-open topology. For a subset A of the real line K., a Hattori space denoted as H (A) is defined as follows: neighborhoods of points from A are given by usual Euclidean neighborhoods and those in the complement of A are given by neighborhoods of the right half-open topology. In particular, spaces S = S0 , SA , and H (A) satisfy the conditions of the previous two theorems.

Download file
Counter downloads: 172

Keywords

прямая Зоргенфрея, функция первого класса Бэра, наследственно бэровское пространство, наследственно линделефово пространство, cl-функция, множества типа Fc и Gs, Sorgenfrey line, function of the first Baire class, hereditarily Baire space, hereditarily Lindelof space, cliquish function, Fc and Gs sets

Authors

NameOrganizationE-mail
Sukhacheva Elena S.Tomsk State Universitysirlus9113@mall.ru
Всего: 1

References

Александров П.С. Введение в теорию множеств и общую топологию. М.: Наука, 1977. 368 с.
Bouziad A., Sukhacheva E. On Hattori spaces // Commentationes Mathematicae Universitatis Carolinae. 2017. No. 2. P. 213-223. DOI 10.14712/1213-7243.2015.199.
van Douwen E.K. Closed copies of the rationals // Commentationes Mathematicae Universitatis Carolinae. 1987. V. 28. No. 1. P. 137-139.
Натансон И.П. Теория функций вещественной переменной. М.: Наука, 1974. 480 с.
Neubrunnova A. On quasicontinuous and cliquish functions // Casopis pro pestovani matematiky. 1974. V. 99. No. 2. P. 109-114.
Osipov A.V., Pytkeev E.G. On sequential separability of functional spaces // Topology and its Applications. 2017. V. 221. P. 270-274.
Tkachuk V.V. A Cp-Theory problems book. Topological and functions space. New York: Springer, 2011.
Энгелькинг Р. Общая топология. М.: Мир, 1986. 752 с.
Hattori Y. Order and topological structures of posets of the formal balls on metric spaces // Mem. Fac. Sci. Eng. Shimane Univ. Ser. B Math. Sci. 2010. V. 43. P. 13-26.
 On first Baire class functions defined on some classes of nonmetrizable spaces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/4

On first Baire class functions defined on some classes of nonmetrizable spaces | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/4

Download full-text version
Counter downloads: 1230