Numerical investigation of the pressure pulsation magnitude and natural aeroacoustic frequencies in the combustion chambers with a charge of a complex shape | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/6

Numerical investigation of the pressure pulsation magnitude and natural aeroacoustic frequencies in the combustion chambers with a charge of a complex shape

The paper presents the results of numerical modeling of combustion product outflow in a gas-dynamic channel of the rocket engine. The pressure fluctuations have been determined in a gas cavity of combustion chamber. A numerical model is based on the Navier-Stokes equations for a single-phase compressible gas. The obtained solution of the Reynolds-averaged Navier-Stokes (RANS) equations with k-e turbulence model has been compared with that of the complete Navier-Stokes equations with large-eddy simulation (LES) model. The calculations have been implemented using the FLUENT package and GAMBIT CAD preprocessor. The numerical simulations for a complex combustion surface have been performed to reveal a possible instability of the flow and pressure self-oscillations. The frequency-amplitude spectrum of the pressure fluctuations in the different regions of combustion chamber has been determined by the fast Fourier transform. Methodological calculations have been carried out for various configurations of the free volume in the gas cavity. The results of calculations made it possible to define more precisely the analytical formula for determining natural acoustic frequencies in the combustion chamber. Solutions in the framework of the RANS equations allowed one to determine accurately the positions of the acoustic modes in the combustion chamber. In combustion chambers of a complex shape, vortex disturbances generate sound waves and represent a strong source of the gas-dynamic perturbations. An approach based on the solution of the complete Navier-Stokes equations with LES turbulence model made it possible to determine the amplitude of the pressure oscillations taking into account a large-scale vortex generation. It has been shown that when the frequency of vortex generation is equal to the natural acoustic oscillations of combustion chamber, the frequency capture occurs accompanied with an increase in the pressure fluctuation magnitude.

Download file
Counter downloads: 244

Keywords

камера сгорания, продукты сгорания, газовая динамика, турбулентность, математическое моделирование, пульсации давления, частотный анализ, собственные акустические колебания, combustion chamber, combustion products, gas dynamics, turbulence, mathematical modeling, pressure pulsations, frequency analysis, natural acoustic oscillation

Authors

NameOrganizationE-mail
Glazunov Anatoliy A.Tomsk State Universitygla@niipmm.tsu.ru
Eremin Ivan V.Tomsk State Universityiveremin@niipmm.tsu.ru
Zhiltsov Konstantin N.Tomsk State Universitykonstantin@niipmm.tsu.ru
Kostyushin Kirill V.Tomsk State Universitykostushin@niipmm.tsu.ru
Tyryshkin Il'ya M.Tomsk State Universitytyryshkin@nilpmm.tsu.ru
Shuvarikov Vladimir A.Tomsk State Universityshuvaa@niipmm.tsu.ru
Всего: 6

References

Тимнат И. Ракетные двигатели на химическом топливе: пер. с англ. М.: Мир, 1990. 294 с.
Ерохин Б.Т. Теория внутрикамерных процессов и проектирование РДТТ: учебник для высших технических учебных заведений. М.: Машиностроение, 1991. 560 с.
Сухинин С.В., Ахмадеев В.Ф. Гидродинамические источники колебаний в камерах сгорания // Физика горения и взрыва. 1993. Т. 29. № 6. С. 38-46.
Присняков В.Ф. Динамика ракетных двигателей твердого топлива: учеб. пособие для вузов. М.: Машиностроение, 1984. 248 с.
Vasenin I.M., Krainov A.Yu., Lipanov A.M., and Shrager E.R. Method for direct numerical simulation of turbulent gas flows in curvilinear coordinates // Computational Mathematics and Mathematical Physics. 2015. V. 55(5). P. 883-890. DOI: 10.1134/S0965542515050176.
Hirschberg L., Schuller T., Collinet J., Schram C., Hirschberg A. Analytical model for the prediction of pulsations in a cold-gas scale-model of a Solid Rocket Motor // J. Sound and Vibration. 2018. V. 419. P. 452-468. DOI: 10.1016/j.jsv.2018.01.025.
Poryazov V.A, Krainov A.Yu. Mathematical model and calculation of the unsteady combustion rate of the metallized solid rocket propellants // Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i Mekhanika. 2017. No. 50. P. 99-111. DOI: 10.17223/ 19988621/50/9
Su W., Wang N., Li J., Zhao Y., Yan M. Improved method of measuring pressure coupled response for composite solid propellants // J. Sound and Vibration. 2014. V. 333. Р. 2226-2240. DOI: 10.1016/j.jsv.2013.12.003.
Minkov L.L., Shrager E.R. and Kiryushkin A.E. Two Approaches for Simulating the Burning Surface in Gas Dynamics // Key Engineering Materials. 2016. V. 685. P. 114-118. DOI: 10.4028/www.scientific.net/KEM.685.114.
Ларионов Б.И., Кузьменко А.В. Исследование пульсаций давления в камере твердотопливного ракетного двигателя на квазистационарном участке работы // Горение и взрыв. 2016. Т. 9. № 4. С. 116-125.
Zhang Q., Li J., Wang W., Wang N. Numerical analysis on oscillation characteristics in a tailpipe nozzle solid rocket motor // J. Spacecraft and Rockets. 2011. V.48(1). Р. 103-109. DOI: 10.2514/1.48867.
Zhang Q., Wang N., Li J., Su W., Zhang Y. Effect of the head cavity on pressure oscillation suppression characteristics in large solid rocket motors // Technological Sciences. 2015. V. 58(7). Р. 1250-1262. DOI: 10.1007/s11431-015-5834-z.
Егоров М.Ю., Егоров Я.В. Численное исследование низкочастотной акустической неустойчивости в двухкамерном РДТТ // Математическое моделирование систем и процессов. 2005. №13. С. 101-109.
Алемасов В.Е., Дрегалин А.Ф., Тишин А.П. Теория ракетных двигателей: учебник для студентов машиностроительных специальностей вузов / под ред. В.П. Глушко. М.: Машиностроение, 1980. 533 с.
Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence. London: Academic Press. 1972. 169 p.
Волков К.Н., Емельянов В.Н. Моделирование крупных вихрей в расчетах турбулентных течений. М.: Физматлит, 2008. 368 с.
 Numerical investigation of the pressure pulsation magnitude and natural aeroacoustic frequencies in the combustion chambers with a charge of a complex shape | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/6

Numerical investigation of the pressure pulsation magnitude and natural aeroacoustic frequencies in the combustion chambers with a charge of a complex shape | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 53. DOI: 10.17223/19988621/53/6

Download full-text version
Counter downloads: 1230