Physical modeling of briquetting processes on the basis of the wastes of polydisperse coke particles and cryogels of a polyvinyl alcohol
The relevance of this research is caused by necessity, complexity, and expensiveness of a residual product recycling. Wastes of both polyvinyl coke particles and coal are one of the crucial sources of soil, water reservoir, and ground water contamination. Therefore, a competent approach is needed to recover such wastes. The main purpose of the research is to develop a simple method for recovery of the wastes of coke-chemical industry. The work is aimed to propose the fuel briquettes made from the coke particles structured by cryogels of a polyvinyl alcohol. During experimental study, the aqueous solutions of polyvinyl alcohol are used. Such solutions are non-Newtonian fluids, whose viscosity depends on the shear rate and is measured by rotational viscometer RheoStress 600 (Germany). Industrial producing of the briquettes is implemented using special manufacturing line that consists of a mixer, vibrating press, freezing chamber, dryer, and automated packer. In the framework of this research, the fuel briquettes have been manufactured from the coke particles structured by cryogels of polyvinyl alcohol. A physical modelling of the briquetting based on the wastes of polydisperse coke particles and cryogels of polyvinyl alcohol has been implemented. A laboratory research has been carried out, which allowed one to develop a special technology applied for recovery of the coke wastes. As a result of this study, the elastic and structural behavior of the briquettes has been tested. It has been revealed that the obtained briquettes are characterized by high energetic properties. Such briquettes are easily transported and stored. They can be used in small power engineering facilities, small businesses, and in domestic use.
Keywords
отходы полидисперсных частиц кокса,
криогель,
брикеты,
поли-виноловый спирт,
физическое моделирование процессов,
wastes of polydisperse coke particles,
cryogel,
briquettes,
polyvinyl alcohol,
physical modelingAuthors
Glazunov Pavel A. | Tomsk Oil and Gas Research and Design Institute | glazunovpa@sibmail.com |
Reschetilowski Vladimir P. | Dresden University of Technology | wladimir.reschetilowski@tu-dresden.de |
Manzhai Vladimir N. | Tomsk Polytechnic University | mang@ipc.tsc.ru |
Zyatikov Pavel N. | Tomsk Polytechnic University | zpavel@tpu.ru |
Solov'ev Vasiliy V. | Tomsk Polytechnic University | solowyev@gmail.com |
Всего: 5
References
Zhanga G., Sun Y., Xua Y. Review of briquette binders and briquetting mechanism // Renewable and Sustainable Energy Reviews. 2018. V. 82. No. 1. P. 477-487. DOI: https:// doi.org/10.1016/j.rser.2017.09.072.
Манжай В.Н., Фуфаева М.С., Егорова Л.А. Топливные брикеты на основе мелкодисперсных частиц кокса и криогелей поливинилового спирта // Химия твертого топлива. 2013. № 1. С. 44-47. DOI: 10.7868/S0023117713010076.
Манжай В.Н., Фуфаева М.С. Дисперсность и устойчивость пены, полученной из раствора поливинилового спирта, и свойства сформированных пенокриогелей // Коллоидный журнал. 2014. Т. 76. № 4. С. 495-499.
Колесникова Е.С., Колосова О.Ю., Лозинский В.И. Криогели поливинилового спирта, содержащие добавки биологически активных веществ // Успехи в химии и химической технологии. 2017. Т. 31. № 12. С. 21-23
Podorozhko E.A., Korlyukov A.A., Lozinsky V.I. Cryostructuring of polymer systems. XXX. Poly(vinyl alcohol)-based composite cryogels filled with small disperse oil droplets: A gel system capable of mechanically-induced releasing of the lipophilic constituents // J. Appl. Polym. Sci. 2010. V. 117. No. 3. Р. 1332-1349.
Евтюгин В.Г., Маргулис А.Б., Дамшкалн Л.Г. и др. Сорбция микроорганизмов крупнопористыми агарозными криогелями, содержащими привитые алифатические цепи различной длины // Микробиология. 2009. Т. 78. № 5. С. 667-673.
Лозинский В.И. Новое семейство макропористых и сверхмакропористых материалов биотехнологического назначения - полимерные криогели // Изв. РАН. Сер. химия. 2008. № 5. С. 996-1013.
Лозинский В.И., Дамшкалн Л.Г., Курочкин И.Н., Курочкин И.И. Изучение криоструктурирования полимерных систем. Влияние скорости охлаждения водных растворов поливинилового спирта при их замораживании на физико-химические свойства и пористую морфологию криогелей, получающихся после оттаивания // Коллоидный журнал. 2012. Т. 74. № 3. С. 343-352.
Лозинский В.И. // Успехи химии. 2002. Т. 71. № 6. С. 559.
Sylvain Deville. Freezing Colloids: Observations, Principles, Control, and Use Applications in Materials Science, Life Science, Earth Science, Food Science, and Engineering. Engineering Materials and Processes. Springer, 2017. P. 598.
Petrenko Yu.A., Ivanov R.V., Petrenko A.Yu., Lozinsky V.I. Coupling of gelatin to inner surfaces of pore walls in spongy alginate-based scaffolds facilitates the adhesion, growth and differentiation of human bone marrow mesenchymal stromal cells // J. Mater. Sci., Mater. in Med. 2011. V. 22(6). P. 1529-1540.
Podorozhko E.A., Ul'yabaeva G.R., Tikhonov V.E., et al. A study of cryostructuring of systems. 43. Characteristics of microstructure of chitosan-containing complex and composite poly(vinyl alcohol) cryogels // Colloid J. Russian Academy of Sciences. 2017. V. 79. No. 1. P. 94-105.
Borowski G., Stqpniewski W., Wojcik-Oliveira K. Effect of starch binder on charcoal briquette properties // Int. Agrophys. 2017. V. 31. P. 571-574. DOI: htts://doi.org/10.1515/intag-2016-0077.
Lohmeier R., Schroder H.-W., Repke J.-U., Heckmann H. Briquetting of coal fines for use in smelting reduction processes // BHM Berg- und Huttenmannische Monatshefte. 2013. V. 158. No. 11. P. 451-452. DOI: 10.1007/s00501-013-0193-1
Vasiliev N.K., Pronk A.D.C., Shatalina I.N., et al. A review on the development of reinforced ice for use as a building material in cold regions // Cold Regions Science and Technology. 2015. V. 115. P. 56-63. Eindhoven University of Technology, Eindhoven, Netherlands.
Manzhai V.N. and Fufaeva M.S. Polyvinyl alcohol cryogels as an efficient spent - oil utilization method // Chemistry and Technology of Fuels and Oils. 2015. No. 5. P. 38-41.
Скляр М.Г. Интенсификация коксования и качество кокса. М.: Металлургия, 1976. 255 с.
Zyatikov P.N., Vasilevsky M.V., Deeva V.C., and Burykin A.N. Separation of particles in channels rotary engine // MATEC Web of Conferences 23, 01011 (2015).
Vasilevsky M.V. et al. Separation of particles in swirling flow in coaxial channel [Electronic resource] // European Physical Journal Web of Conferences (EPJ Web of Conferences). 2016. V. 110: Thermophysical Basis of Energy Technologies. [01076, 4 p.]. Title screen. Свободный доступ из сети Интернет.
Головин Г.С., Крапчин С.С. Переработка углей - стратегическое направление повышения качества и расширения сфер их использования. М.: НТК «Трек», 2006. 396 с.