Reduction of the acoustic inverse problem to an optimal control problem and its investigation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 54. DOI: 10.17223/19988621/54/1

Reduction of the acoustic inverse problem to an optimal control problem and its investigation

In this paper, the coefficient inverse problem for the one-dimensional acoustic equation is considered. The problem is reduced to an optimal control problem. In the new problem, the existence theorems are proved, necessary conditions of optimality are derived, differentiability of the functional is shown, and an iteration algorithm for finding the solution of the optimal control problem based on the gradient projection method is proposed. We consider the problem of determining a pair of functions (u (x,t),w(x)) under constraints du+ U(x)|x = f (x, t), (x, t) e Q = (0, i )x(0,T), (1) dt dx dx u(x,0) = u0 (x),du (x,0) = u1 (x),0 - x - £, (2) dt f^U = 0,f^U, = 0,0 - t - T, (3) dx dx u(x,T) = g(x),0 - x -I, here, f e L2 (Q), u0 e W\ [0,i], u1 e L2 (0,1), g e W,1 [0,i] - are given functions. This problem is reduced to the following optimal control problem: find a function belonging to the set V = j^x) e W1 [0,t]: |о(x)| -M1,|о'^)| -M2 a.e.on [0,(4) and minimizing the functional 1 1 J (о) = - J[u (x,T;о) - g(x)]x (5) under constraints (1)-(3), where u (x, t; о) is a solution of problem (1)-(3) at a given w(x), which is called a control. The solvability of problem (1)-(3), (4), (5) is proved. Then, the differential of the functional is calculated and the following theorem is proved. Theorem. Under the conditions considered above, the inequality J^My, (x,t) ((x) - о (x))dxdt > 0 Q dx where y, (x,t) is solution of the adjoint problem corresponding to the control о, = о, (x) d 2y d 2y d . , _ , , _ -ZT-TT"(оу) = 0,(x,t) e Q, dt dx dx v| t=T = 0,·дУ| t=T = u (x,T;о) - g(x),0 - x - i, dt ^=0 = 0,^U = 0,0 -1 - T dx dx is a necessary condition for optimality of the control о, = о, (x) e V of the problem (1)-(3), (4), (5) if it is fulfilled for all v e V.

Download file
Counter downloads: 251

Keywords

gradient of the functional, necessary conditions, optimal control, coefficient inverse problem, градиент функционала, оптимальное управление, необходимые условия, коэффициентная обратная задача

Authors

NameOrganizationE-mail
Guliyev Hamlet F.Baku State Universityhkuliyev@rambler.ru
Nasibzadeh Vusala N.Sumgait State Universitynasibzade1987@gmail.com
Всего: 2

References

Михайлов В.П. Дифференциальные уравнения в частных производных. М.: Наука, 1983. 424 с.
Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1981. 400 с.
Экланд И., Темам Р. Выпуклый анализ и вариационные проблемы. М.: Мир, 1979. 399 с.
Лионс Ж.Л., Мадженес Э. Неоднородные граничные задачи и их приложения. М.: Мир, 1971.
Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973. 408 с.
Искаков К.Т., Кабанихин С.И. Обобщенное решение обратной задачи для уравнения акустики. Новосибирск: Изд-во НИИ дискретной математики и информатики, 2000. 16 с.
Kabanikhin S.I. Numerical analysis of inverse problems // J. Inverse and ILL-Posed Problems. 1995. V. 3. № 4. P. 278-304.
Романов В.Г., Кабанихин С.И. Обратные задачи геоэлектрики. М.: Наука, 1991.
Li Во., Lou Hongwei. Optimality conditions for semilinear hyperbolic equations with controls in coefficients // Applied Mathematics and Optimization. 2012. V. 65(3). P. 371-402.
Тихонов А.Н. О решении некорректно поставленных задач и методе регуляризации // Докл. АН СССР. 1963. Т. 151. № 3. С. 501-504.
Тагиев Р.К. Задачи оптимального управления коэффициентами уравнений с частными производными: автореф. докт. дис. Баку, 2010.
Кабанихин С.И. Обратные и некорректные задачи. Новосибирск: Сиб. науч. изд-во, 2009. 457 с.
Тагиев Р.К Об оптимальном управлении коэффициентами гиперболического уравнения // Автомат. и телемех. 2012. № 7. С. 40-54.
Кабанихин С.И., Искаков К.Т. Оптимизационные методы решения коэффициентных обратных задач. Новосибирск: НГУ, 2001. 315 с.
 Reduction of the acoustic inverse problem to an optimal control problem and its investigation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 54. DOI: 10.17223/19988621/54/1

Reduction of the acoustic inverse problem to an optimal control problem and its investigation | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 54. DOI: 10.17223/19988621/54/1

Download full-text version
Counter downloads: 744