On the computation method for the stress intensity factor of a stationary crack in mode I under dynamic loading
A method for calculating the time dependence of the stress intensity factor of a dynamic loaded body with a stationary crack in mode I is proposed. The method represents a modified method of lines developed for solving the problems of dynamic fracture mechanics. Time integration is performed using the finite difference method. The Crank-Nicolson implicit scheme is applied. Boundary problems obtained at each step of time integration are solved by the finite element method. For each time instant, the stress intensity factor is determined by the calculated value of specific energy release. For this purpose, the special cohesive finite elements ensured by the implementation of Barenblatt's postulates are used. Addition of the degrees of freedom for the mesh points arranged along the crack line enables to provide a smooth joining of the edges at the crack tip. This is equivalent to the absence of stress singularity in the tip of crack. The results of calculations are compared with those obtained by other researchers and with experimental data. A satisfactory agreement ensures the efficiency of the method applied. The latter can also be used to solve the problems of growing and branching cracks. Moreover, it admits taking into account plastic deformation.
Keywords
динамическая механика разрушения,
метод прямых,
когезионные конечные элементы,
dynamic fracture,
method of lines,
cohesive finite elementsAuthors
Malik Alexander V. | Tula State University | runer10@mail.ru |
Lavit Igor M. | Tula State University | IgorLavit@yandex.ru |
Всего: 2
References
Ma C.C., Freund L.B. The extent of the stress intensity factor field during crack growth under dynamic loading conditions // J. Appl. Mech. 1986. V. 53. P. 303-310.
Ravi-Chandar K., Knauss W.G. Dynamic crack-tip stresses under stress wave loading - a comparison of theory and experiment // Int. J. Fract. 1982. V. 20. P. 209-222.
Fedelinski P., Aliabadi M.H., Rooke D.P. The dual boundary element method: J-integral for dynamic stress intensity factor // Int. J. Fract. 1994. V. 65. P. 369-381.
Nishioka T., Atluri S.N. Numerical modeling of dynamic crack propagation in finite bodies, by moving singular elements. Part 2: Results // J. Appl. Mech. 1980. V. 47. P. 577-582.
Ладыженская О.А. Краевые задачи математической физики. М.: Наука, 1973. 408 с.
Тимошенко С.П., Гудьер Дж. Теория упругости. М.: Наука, 1975. 576 с.
Михлин С.Г. Вариационные методы в математической физике. М.: Наука, 1970. 512 с.
Moes N., Belytschko T. Extended finite element method for cohesive crack growth // Eng. Fract. Mech. 2002. V. 69. P. 813-833.
Лавит И.М. Об устойчивом росте трещины в упругопластическом материале // Проблемы прочности. 1988. № 7. С. 18-23.
Willis J.R. A comparison of the fracture criteria of Griffith and Barenblatt // J. Mech. Phys. Solids. 1967. V. 15. P. 151-162.
Sukumar N., Dolbow J.E., Moes N. Extended finite element method in computational fracture mechanics: a retrospective examination // Int. J. Fract. 2015. V. 196. P. 189-206.
Баренблатт Г.И. Математическая теория равновесных трещин, образующихся при хрупком разрушении // Журн. прикл. мех-ки и техн. физики. 1961. № 4. С. 3-56.
de Borst R., Remmers J.J.C., Needleman A. Mesh-independent discrete numerical representations of cohesive-zone models // Eng. Fract. Mech. 2006. V. 73. P. 160-177.
Song J.H., Wang H., Belytschko T. A comparative study on finite element methods for dynamic fracture // Comput. Mech. 2008. V. 42. P. 239-250.
Menouillard T., Belytschko T. Dynamic fracture with meshfree enriched XFEM // Acta Mech. 2010. V. 213. P. 53-69.
Kumar S., Singh I.V., Mishra B.K., Singh A. New enrichments in XFEM to model dynamic crack response of 2-D elastic solids // Int. J. Impact Engrg. 2016. V. 87. P. 198-211.
Li W., Zheng H., Sun G. The moving least squares based numerical manifold method for vibration and impact analysis of cracked bodies // Eng. Fract. Mech. 2018. V. 190. P. 410434.
Xu X.P., Needleman A. Numerical simulations of fast crack growth in brittle solids // J. Mech. Phys. Solids. 1994. V. 42. P. 1397-1434.
Wu L., Liu P., Shi C., Zhang Z., Bui T.Q., Jiao D. Edge-based smoothed extended finite element method for dynamic fracture analysis // Appl. Math. Modelling. 2016. V. 40. P. 8564-8579.
Yao W., Cai Z., Hu X. A new symplectic analytical singular element for crack problems under dynamic loading condition // Eng. Fract. Mech. 2018. V. 188. P. 431-447.
Liu P., Bui T.Q., Zhang C., Yu T.T., Liu G.R., Golub M.V. The singular edge-based smoothed finite element method for stationary dynamic crack problems in 2D elastic solids // Comput. Methods Appl. Mech. Engrg. 2012. V. 233-236. P. 68-80.
Murti V., Valliappan S. The use of quarter point element in dynamic crack analysis // Eng. Fract. Mech. 1986. V. 23. P. 585-614.
Zienkiewicz O.C., Taylor R.L. The finite element method. Oxford: Butterworth-Heinemann, 2000.
Barsoum R.S. Application of quadratic isoparametric finite elements in linear fracture // Int. J. Fract. 1974. V. 10. P. 603-605.
Freund L.B. Dynamic fracture mechanics. New York: Cambridge University Press, 1998.
Нисиока Т., Атлури C. Вычислительные методы в динамике разрушения // Вычислительные методы в механике разрушения. М.: Мир, 1990. С. 267-321.
Ravi-Chandar K. Dynamic fracture. Oxford: Elsevier, 2004.