On the set K3(G) of finite groups elements commuting exactly with three elements
Let G be an arbitrary finite multiplicative group, |G| = n. We define the set K3(G) as follows: K3(G) = {x e G | |Cg(x)| = 3} = {x e G | Cg(x) = {e, x, x2}}. It follows from the definition of K3(G) that A) if х e K3(G), then the order of x is 3 (о(х) = 3); B) if х e K3(G), then х2 e K3(G). The following properties of the set K3(G) have been proved. Proposition 1. If K3(G) * 0, then |G| : 3 and |G| / 9. Proposition 2. If х e K3(G), then xg e K3(G) for each g e G. Proposition 3. Let K3(G) * 0, х e G and o(x) = 3. Then х e K3(G). Proposition 4. Let |G| = n; K3(G) * 0. Then |K3(G)| e {{; у Lemma 5. Let a, g e G, o(a) = 3; g~'ag = a2. Then o(g):2 . Proposition 6. 1) Let o(a) = 3 and g^ag = a2. Then | G | :6 . 2) If |G| = 2k + 1, then K3(G) = 0 or |K3 (G)| = ^Gi. Theorem 7. Let G be a finite simple group, |G| = n, K3(G) * 0. Then all involutions of the group G form a class of conjugate elements.
Keywords
группа, инволюция, центр группы, нормальный делитель, group, involution, center of a group, normal subgroupAuthors
Name | Organization | |
Zabarina Anna I. | Tomsk State Pedagogical University | aizabarina@gmail.com |
Fomina Elena A. | Tomsk State Pedagogical University | ef254@mail.ru |
References

On the set K3(G) of finite groups elements commuting exactly with three elements | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/1