The structure of integrals of the second Loewner - Kufarev differential equation in a particular case | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/2

The structure of integrals of the second Loewner - Kufarev differential equation in a particular case

In the geometric theory of functions of a complex variable, the first and the second Loewner-Kufarev differential equations are well known. Considering the first one of them, I. E. Bazilevich pointed out the class of univalent functions in a unit circle, now known as I. E. Bazilevich's class. This paper shows that I. E. Bazilevich's formula can be derived by considering the second Loewner-Kufarev equation with a linear right-hand side. We have also studied a differential equation with a nonlinear right-hand side, rational in a particular case. The problem point in the latter case is to specify a parametric family of regular functions with a positive real part in the unit circle at each fixed value of the parameter. The two lemmas proved in the paper simplify the problem of constructing a right-hand side with a positive real part when considering nonlinear right-hand sides.

Download file
Counter downloads: 230

Keywords

геометрическая теория функций комплексного переменного, дифференциальное уравнение Левнера - Куфарева, geometric theory of functions of a complex variable, Loewner-Kufarev differential equation

Authors

NameOrganizationE-mail
Zadorozhnaya Olga V.Kalmyk State Universityovz_70@mail.ru
Kochetkov Vladimir K.Kalmyk State Universitykvk1106@mail.ru
Всего: 2

References

Александров И.А. Методы геометрической теории аналитических функций. Томск.: Томский государственный университет, 2001. 220 с
Александров И.А. Параметрические продолжения в теории однолистных функций. М.: Наука, 1976. 344 с.
Авхадиев Ф.Г., Аксентьев А.А. Основные результаты в достаточных условиях однолистности аналитических функций // УМН. 1975. Т. 30. Вып. 4(184). С. 3-60.
Базилевич И.Е. Об одном случае интегрируемости в квадратурах уравнения Левнера -Куфарева // Матем. сб. 1955. Т. 37. № 3. С. 471-476.
Кочетков В.К., Задорожная О.В. Некоторые вопросы аналитической теории дифференциальных уравнений и геометрической теории функций комплексного переменного. Элиста: Издательство Калм. ун-та, 2014. 160 с.
 The structure of integrals of the second Loewner - Kufarev differential equation in a particular case | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/2

The structure of integrals of the second Loewner - Kufarev differential equation in a particular case | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/2

Download full-text version
Counter downloads: 526