The Grothendieck group K0 of an arbitrary csp-ring
Fix an infinite set L of primes. For every p e L, let Rp be either the ring of p-adic integers or the residue class ring Z /pkZ (the number k > 0 may depend on p). Define K = ПRp and T =0Rpс K ; peL peL it is clear that T is an ideal of the ring K. By a csp-ring we mean any subring R of the ring K such that T с R and the quotient ring R /T is a field. The symbol K0(R) denotes the Grothendieck group of the monoid of isomorphism classes of finitely generated projective modules over R (with direct sum as the operation). We find necessary and sufficient conditions for a module over R to be a finitely generated projective module. These conditions enable us to prove the following theorem. Theorem 7. For every csp-ring R, the Grothendieck group K0(R) is a free group of countable rank. If we have two csp-rings R and S, then every ring homomorphism R ^ S induces a group homomorphism K0(R) ^ K0(S ). We describe this group homomorphism for arbitrary csp-rings R and S.
Keywords
csp-кольцо, проективный модуль, группа Гротендика, csp-ring, projective module, Grothendieck groupAuthors
Name | Organization | |
Timoshenko Egor A. | Tomsk State University | tea471@mail.tsu.ru |
References

The Grothendieck group K0 of an arbitrary csp-ring | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/4