Investigation of characteristics of turbulent flame with effect of low energy fluctuations | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/6

Investigation of characteristics of turbulent flame with effect of low energy fluctuations

The physicochemical processes associated with combustion and flame propagation in various technological devices and in natural fires are realized under conditions of turbulence. Traditionally, in experimental studies of combustion processes, thermocouples are used to determine the temperature fields in a flame. The methods of thermography allow us to abandon the use of thermocouples and at the same time obtain information on the temperature distribution with good spatial and temporal resolution. In this paper we present the results of an investigation of the influence of sound perturbations on the combustion process. As combustible materials liquid hydrocarbon fuels (gasoline, kerosene, diesel fuel) and vegetable combustible materials (a mixture of field combustible materials, pine needles, pine wood, cedar wood) were used. To measure the flow velocity in a turbulent flame, the contactless optical method of flow diagnostics was used - particle image velocimetry (PIV) method. The intensity of the IR radiation of the flame and the temperature distribution in the flame were registered with the JADE J530SB thermal imager. As a result, a good agreement was reached on the estimation of the size of the vortex structures obtained using PIV and the dimensions of the temperature inhomogeneities recorded by means of IR thermography in a flame.

Download file
Counter downloads: 184

Keywords

combustion, turbulence, flame, IR- diagnostic, PIV-measurements, горение, турбулентность, пламя, ИК-диагностика, PIV-измерения

Authors

NameOrganizationE-mail
Agafontsev Mihail V.Tomsk State Universitykim75mva@gmail.com
Anufriev Igor' S.Kutateladze Institute of Thermophysics, SB RASanufriev@itp.nsc.ru
Kopyev Evgenij P.Kutateladze Institute of Thermophysics, SB RASkopyev.evgeniy@mail.ru
Shadrin Evgenij Yu.Kutateladze Institute of Thermophysics, SB RASevgen_zavita@mail.ru
Loboda Egor L.Tomsk State Universityloboda@mail.tsu.ru
Lutsenko Anastasiya V.Tomsk State Universityloboda@mail.tsu.ru
Всего: 6

References

Lewis B. and Elbe G. Combustion, Flames and Explosions of Gases. 3 ed. Academic Press., 1987.
Warnatz J.,Maas U.,Dibble R.W. Combustion. Berlin: Springer, 1999. 300 p.
Shelkin K.I. Influence of tube non-uniformities on the detonation ignition and propagation in gases // JETP. 1940. V. 10. P. 823-827.
Loboda E.L., Reyno V.V., Vavilov V.P. The use of infrared thermography to study the optical characteristics of flames from burning vegetation // Infrared Physics and Technology. 2014. V. 67. P. 566-573. DOI: 10.1016/j.infrared.2014.09.041.
Kuznetsov V.T. and Loboda E.L. Experimental study of peat ignition upon exposure to radiant energy // Combustion, Explosion, and Shock Waves. 2010. V. 46. No. 6. P. 690-695. DOI: 10.1007/s10573-010-0091-8.
Qian C. and Saito K. Measurements of pool-fire temperature using IR technique // Combustion Institute/Central and Western States (USA) and Combustion Institute/Mexican National Section and American Flame Research Committee. Combustion Fundamentals and Applications. Joint Technical Meeting. Proceedings. April 23-26, 1995, San Antonio, TX, Gore, J. P., Editor(s). P. 81-86.
Rinieri F., Balbi J.-H., Santoni P-A. On the use of an infra-red camera for the measurement of temperature in fires of vegetative fuels // QIRT 2006 (http://qirt.gel.ulaval.ca/archives/ qirt2006/papers/011.pdf).
Dupuy J., Vachet P., Marechal J., Melendez J., De Castro A.J. Thermal infrared emission-transmission measurements in flames from a cylindrical forest fuel burner // Int. J. Wildland Fire. 2007. No. 16. P. 324-340. DOI: 10.1071/WF06043.
Loboda E.L., Matvienko O.V., Vavilov V.P., Reyno V.V. Infrared thermographic evaluation of flame turbulence scale // Infrared Physics & Technology. 2015. V. 72. P. 1-7. DOI: 10.1016/j.infrared.2015.07.001.
Лобода Е.Л., Рейно В.В., Агафонцев М.В. Выбор спектрального интервала для измерения полей температуры в пламени и регистрации экранированных пламенем высокотемпературных объектов с применением методов ИК-диагностики // Изв. вузов. Физика. 2015. Т. 58. № 2. С. 124-128.
Loboda E.L. and Reyno V.V. Influence of the coefficient of measuring temperatures at burning forest and steppe combustible materials with different moisture content with IR methods. Frequency analysis of temperature changing // Optics of Atmosphere and Ocean. 2011. No. 11. P. 1002-1006. [In Russian]
Anufriev I.S., Anikin Yu.A., Filkov A.I., et al. Investigation into the structure of a swirling flow in a model of a vortex combustion chamber by laser Doppler anemometry // Techn. Phys. Lett. 2013. V. 39. No. 1. P. 30-32. DOI: 10.1134/S1063785013010045.
Alekseenko S.V., Anufriev I.S., Vigriyanov M.S., et al. Steam-enhanced regime foe liquid hydrocarbons combustion: velocity distribution in the burner flame // Thermophysics and Aeromechanics. 2014. V. 21. No. 3. P. 393-396. DOI: 10.1134/S0869864314030123.
Anufriev I.S., Kopyev E.P. and Loboda E.L. Study of flame characteristics during liquid hydrocarbons combustion with steam gasification // Proc. SPIE 9292, 20th Int. Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 929226 (November 25, 2014); DOI: 10.1117/12.2086623.
Kairuki J., Dawson J.R., Mastorakos E. Measurements in turbulent premixed bluff body flames close to blow-off // Combustion and Flame. 2012. V. 159. P. 2589-2607. DOI: 10.1016/j.combustflame.2012.01.005.
Albini F.A. Physical model for fire spread in brush // Proc. 2 Int. Symposium on Combustion. Pittsburg, 1967. P. 553-560.
Grishin A.M. Mathematical modeling of forest fires and new methods of fighting them. Tomsk: Publishing House of the Tomsk State University, 1997. 390 p.
Morvan D., Dupuy J.L. Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation // Combustion and Flame. V. 138. No. 3. P. 199-210.
Perminov V.A., Loboda E.L. and Reyno V.V. Mathematical modeling of surface forest fires transition into crown forest fires // Proc. SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, 929225 (November 25, 2014). DOI: 10.1117/12.2086618.
Li Z.S., Li R., Sun Z.W., Rai X.S., Alden M. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-short PLIF imaging of CH, OH, and CH2O in piloted premixed jet flame // Combustion and Flame. 2010. V. 157. P. 1087-1096. DOI: 10.1016/j.combustflame.2010.02.017.
Kathryn N. Gabet, Han Shen, Randy A. Patton, Frederik Fuest, Jeffrey A. Sutton. A comparison of turbulent dimethyl ether and methane non-premixed flame structure // Proc. Combustion Institute. 2013. V. 34. P. 1447-1454. DOI: 10.1016/j.proci.2012.06.183.
Kazuhiro Yamamoto, Shinji Isii, Masahiro Ohnishi. Local flame structure and turbulent burning velocity by joint PLIF imaging // Proc. Combustion Institute. 2011. V. 33. P. 1285-1292. DOI: 10.1016/j.proci.2010.06.087.
Anufriev I.S., Sharypov O.V., and. Shadrin E.Yu. Flow diagnostics in a vortex furnace by particle image velocimetry // Techn. Phys. Lett. 2013. V. 39. No. 5. P. 30-37. DOI: 10.1134/S1063785013050155.
Alekseenko S.V., Anufriev I.S., Vigriyanov M.S., et al. Steam-Enhanced Regime for Liquid Hydrocarbons Combustion: Velocity Distribution in the Burner Flame // Thermophys. Aero-mech. 2014. V. 21. No. 3. P. 393-396. DOI: 10.1134/S0869864314030123.
Cant R.S., Mastorakos E. An Introduction to Turbulent Reacting Flows. Imperial College Press, 2008. 177 p.
 Investigation of characteristics of turbulent flame with effect of low energy fluctuations | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/6

Investigation of characteristics of turbulent flame with effect of low energy fluctuations | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 55. DOI: 10.17223/19988621/55/6

Download full-text version
Counter downloads: 526