The hedging strategy for Asian option | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 56. DOI: 10.17223/19988621/56/3

The hedging strategy for Asian option

The article deals with the problem of portfolio investment in the Black-Scholes model with several risky assets. The hedging strategy for Asian option is found using the martingale method. The analytical properties (differentiability) of the densities of exponential random variables are studied.

Download file
Counter downloads: 206

Keywords

хеджирующая стратегия, Азиатский опцион, стохастические дифференциальные уравнения, Броуновское движение, модель Блэка - Шоулса, hedging strategy, Asian option, stochastic differential equations, Brownian motion, Black and Scholes model

Authors

NameOrganizationE-mail
Shishkova Alyona АndreevnaTomsk State Universityalshishkovatomsk@gmail.com
Всего: 1

References

Kozhin K. (2002) Vse ob ekzoticheskikh optsionakh [All about exotic options]. Rynok tsen-nykh bumag [Stocks and bonds market]. 1(15). pp. 53-57. (In Russian).
Zang P.G. (1995) An introduction to exotic options. European Financial Managment. 1(1). pp. 87-95.
Geman H., Yor M. (1993) Bessel processes, Asian options, and perpetuities. Mathematical Finance. 3(4). pp. 35-38.
Kemna A.G.Z.,Vorst A.C.F. (1990) Pricing method for options based on average asset values. Banking Finance. 14. pp. 113-129.
Carverhill A.P., Clewlow L.J. (1990) Valuing average rate (Asian) options. Risk. 3. pp. 25-29.
Lapeyre B., Temam E. (2001) Competitive Monte Carlo methods for the pricing of Asian options. J. Computational Finance. 5(1). pp. 39-57. DOI: 10.21314/JCF.2001.061.
Fu M., Madan D., Wang T. (1998) Pricing continuous Asian options: a comparison of Monte Carlo and Laplace transform invertion methods. J. Computational Finance. 2(2). pp. 49-74 DOI: 10.21314/JCF.1998.024.
Seghiouer H., Lidouh A., Nqi F.Z. (2008) Pricing Asian options by Monte Carlo Method under MPI Environment. Int. J. Math. Analysis. 2(27). pp. 1301-1317.
Ruttiens A. (1990) Average rate options, classical replica. Risk. 3. pp. 33-36.
Vorst T. (1992) Prices and hedge ratios of average exchange rate options. Int. Review of Financial Analysis. 1(3). pp. 179-193. DOI: 10.1016/1057-5219(92)90003-M.
Levy E. (1992) Pricing European Average Rate Currency Options. Int. Money Finance. 11. pp. 474-491.
Shiryaev A.N. (1999) Essentials of Stochastic Finance: Facts, Models, Theory. Hackensack New Jersey: World Scientific Publishing Company. 834 p.
Liptser R.S., Shiryaev A.N. (2001) Statistics of random processes. 2nd rev. and exp. ed. Springer Verlag: Berlin. 425 p.
Shishkova A.A. (2018) Calculation of Asian options for the Black-Scholes model. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics]. 51. pp. 48-63. DOI 10.17223/19988621/51/5.
 The hedging strategy for Asian option | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 56. DOI: 10.17223/19988621/56/3

The hedging strategy for Asian option | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 56. DOI: 10.17223/19988621/56/3

Download full-text version
Counter downloads: 616