A method for determining natural frequencies of the dead-end branches of gas pipelines | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 56. DOI: 10.17223/19988621/56/6

A method for determining natural frequencies of the dead-end branches of gas pipelines

The frequency spectra for the dead-end branches of gas pipelines, representing the acoustic resonators in a typical collector of a compressor station, are obtained using the methods of the classical theory of vibrations and waves. The half- and quarter-wave resonances of flat and cylindrical semi-open resonators are studied solving the wave equation by the method of separation of variables in an analytical form. Primarily, the qualitative theory of sound wave propagation is considered on the basis of a one-dimensional wave equation. The conclusions made are used for determining the natural frequencies in the two-dimensional problems with various types of symmetry. Minimum frequencies of flat and cylindrical resonators are found to be the same. By means of the numerical simulation methods applying the ANSYS FLUENT software package, the frequencies of vortex shedding at the edges of gas pipeline connections are determined. The obtained frequencies appear to be converging. Minimum self-oscillating frequencies of pressure pulsation during the vortex shedding or the Karman vortex street formation are potentially dangerous for technological systems of gas pipelines as they may resonate with natural frequencies of pipeline dead legs. The fundamental tone of such systems is characterized by minimum excitation energy and, consequently, by maximum amplitude. These resonance phenomena may cause a mechanical destruction of the pipeline manifolds.

Download file
Counter downloads: 185

Keywords

трубопроводные тупики, акустический резонатор, собственные частоты, пульсации давления, звуковые колебания, механические колебания, резонанс, pipeline dead legs, acoustic resonator, natural frequencies, pressure pulsations, sound oscillations, mechanical oscillations, resonance

Authors

NameOrganizationE-mail
Lun-Fu Aleksandr ViktorovichGazprom Transgaz Tomsk Ltd; Tomsk State Universitya.lunfu@gtt.gazprom.ru
Bubenchikov Mikhail AlekseevichTomsk State Universitymichael121@mail.ru
Всего: 2

References

Вишняков В.А., Засецкий В.Г., Каравосов Р.К., Прозоров А. Г., Соколинский Л.И. Генерирование и демпфирование колебаний потока в области сопряжения трубопровода со слепым отростком // Инженерно-физический журнал. 1998. Т. 71. № 6. С. 1099-1106.
Вишняков В.А., Засецкий В.Г., Каровосов Р.К, Прозоров А.Г., Соколинский Л.И. Возникновение узкополосных пульсаций давления и их предотвращение в трубе с тупиковой полостью // Труды ЦАГИ. 2001. Вып. 2643. С. 92-101.
Абрамович Г.Н. Прикладная газовая динамика. М. : Наука, 1991. Ч. 1. 600 с.
Лун-Фу А.В., БубенчиковМ.А. Низкочастотные колебания давления в газотранспортных системах // Наука и техника газовой промышленности. 2015. № 3 (63). С. 58-64.
Красильников В.А. Звуковые и ультразвуковые волны в газе, воде и твердых телах. М.: Физматгиз, 1960. 561 с.
Детлаф А.А., Яворский Б.М. Курс физики. М.: Высшая школа, 1973. Т. 3. 511 с.
Benard H. Formation de centres de gyration a l'arriere d'un obstacle en mouvement // C.R. Acad. Sci. Paris. 1908. V. 147. Р. 839-847.
Karman Th. und Rubach H. Uber den Mechanismus des Flussigkeits- und Luftwiderstandes // Physikalische Zeitschrift. 1912. Bd. 13. S. 49-59.
Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидродинамика. М.: Физматгиз, 1963. Ч. 1. 584 с.
Голубев В.В. Труды по аэродинамике. М.; Л.: Гостехиздат, 1957. 980 с.
 A method for determining natural frequencies of the dead-end branches of gas pipelines | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 56. DOI: 10.17223/19988621/56/6

A method for determining natural frequencies of the dead-end branches of gas pipelines | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2018. № 56. DOI: 10.17223/19988621/56/6

Download full-text version
Counter downloads: 616