Adaptive estimation in a heteroscedastic nonparametric regression | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/3

Adaptive estimation in a heteroscedastic nonparametric regression

The paper considers the problem of estimating the unknown function of heteroscedastic regression. An adaptive model selection procedure based on improved weighted estimates of least squares with specially selected weight coefficients is proposed. It is established that the procedure has a higher mean-square accuracy than the procedure based on classical weighted least-squares estimates. For the mean square risk of the proposed procedure, a non-asymptotic oracle inequality is proved that determines the exact upper bound for it in all possible estimates. The results of numerical simulation are given. AMS Mathematical Subject Classification: 62G05, 62G08

Download file
Counter downloads: 188

Keywords

oracle inequality, model selection procedure, improved nonparametric estimation, heteroscedastic regression, оракульное неравенство, процедура выбора модели, улучшенное непараметрическое оценивание, гетероскедастичная регрессия

Authors

NameOrganizationE-mail
Pchelintsev Evgenii A.Tomsk State Universityevgen-pch@yandex.ru
Perelevskiy Svyatoslav S.Tomsk State Universityslavaperelevskiy@mail.ru
Всего: 2

References

Nussbaum M. Spline smoothing in regression models and asymptotic efficiency in L2 // Ann. Statist. 1985. No. 13. P. 984-997.
Galtchouk L., Pergamenshchikov S. Adaptive asymptotically efficient estimation in hetero-scedastic nonparametric regression // J. Korean Statistical Society. 2009. V. 38. No. 4. P. 305-322.
Pinsker M.S. Optimal filtration of square integrable signals in Gaussian white noise // Problems Transimis. information. 1981. No. 17. P. 120-133.
Pchelintsev E., Pergamenshchikov S. Oracle inequalities for the stochastic differential equations // Statistical Inference for Stochastic Processes. 2018. V. 21. No. 2. P. 469-483. DOI: https://doi.org/10.1007/s11203-018-9180-1.
Pchelintsev E., Pchelintsev V., Pergamenshchikov S. Non asymptotic sharp oracle inequality for the improved model selection procedures for the adaptive nonparametric signal estimation problem // Communications - Scientific Letters of the University of Zilina. 2018. V. 20. No. 1. P. 72-76.
Конев В. В., Пергаменщиков С. М., Пчелинцев Е. А. Оценивание регрессии с шумами импульсного типа по дискретным наблюдениям // Теория вероятностей и ее применения. 2013. Т. 58. № 3. С. 454-471. DOI: https://doi.org/10.4213/tvp4520.
Pchelintsev E. Improved estimation in a non-Gaussian parametric regression // Statistical Inference for Stochastic Processes. 2013. V. 16. No. 1. P. 15-28. DOI: https://doi.org/10.1007/ s11203-013-9075-0.
Kneip A. Ordered linear smoothers // Annals of Statistics. 1994. V. 22. P. 835-866.
Galtchouk L., Pergamenshchikov S. Sharp non-asymptotic oracle inequalities for nonparametric heteroscedastic regression models // J. Nonparametric Statistics. 2009. V. 21. No. 1. P. 1-16. DOI: https://doi.org/10.1080/10485250802504096.
Massart P. A non-asymptotic theory for model selection // European Congress of Mathematics. Zurich: Eur. Math. Soc. 2005.
Akaike H. A new look at the statistical model identification // IEEE Trans. on Automatic Control. 1974. V. 19. No. 7. P. 716-723.
Mallows C. Some comments on Cp // Technometrics. 1973. V. 15. P. 661-675.
Barron A., Birge L., Massart P. Risk bounds for model selection via penalization // Probab. Theory Relat. Fields. 1999. V. 113. P. 301-415
Galtchouk L., Pergamenshchikov S. Adaptive sequential estimation for ergodic diffusion processes in quadratic metric // Journal of Nonparametric Statistics. 2011. V. 23. No. 2. P. 255285. DOI: https://doi.org/10.1080/10485252.2010.544307.
Galtchouk L., Pergamenshchikov S. Asymptotic efficient sequential kernel estimates of the drift coefficient in ergodic diffusion processes // Statistical Inference for Stochastic Process. 2006. V. 9. No. 1. P. 1-16.
Cai T., Wang L. Adaptive variance function estimation in heteroscedastic nonparametric regression // Annals of Statistics. 2008. V. 36. No. 5. P. 2025-2054.
Galtchouk L., Pergamenshchikov S. Nonparametric sequential estimation of the drift in diffusion processes // Mathematical Methods of Statistics. 2004. V. 13. No. 1. P. 25-49.
Goldfeld S.M., Quandt R.E. Nonlinear Methods in Econometrics. London: North-Holland, 1972.
Akritas M.G., Vankeilegom I. ANCOVA methods for heteroscedastic nonparametric regression models // J. Amer. Statist. Assoc. 2001. No. 96. P. 220-232. DOI: https://doi.org/10. 1198/016214501750332802
 Adaptive estimation in a heteroscedastic nonparametric regression | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/3

Adaptive estimation in a heteroscedastic nonparametric regression | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/3

Download full-text version
Counter downloads: 607