Development of the approaches for solving an inverse problem of external ballistics in various application conditions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/6

Development of the approaches for solving an inverse problem of external ballistics in various application conditions

The article proposes two approaches for solving an inverse problem of external ballistics. The first approach is based on the iterative method of successive approximations, and allows obtaining the solution to inverse problem with a stated accuracy for any shooting conditions. Simultaneous determining of the angles and direction of shooting makes it possible to reduce a total time of solving the inverse problem. The second approach, which is based on the pre-built approximators for assigned range of variation in the shooting conditions, can significantly simplify and speed up the algorithm for solving the inverse problem of external ballistics. Several types of approximators have been considered: linear approximator, multilayered neural network, radial neural network, and the method of fuzzy decision trees. The best results on the computational accuracy and speed were achieved using the approximator based on a multilayered neural network.

Download file
Counter downloads: 530

Keywords

внешняя баллистика, обратная задача, итерационный алгоритм, аппроксиматор, нейронная сеть, external ballistics, inverse problem, iterative algorithm, approximator, neural network

Authors

NameOrganizationE-mail
Korolev Stanislav A.Kalashnikov Izhevsk State Technical Universitystkj@mail.ru
Lipanov Aleksey M.Keldysh Institute of Applied Mathematics Russian Academy of Sciences; Kalashnikov Izhevsk State Technical UniversityAML35@yandex.ru
Rusyak Ivan G.Kalashnikov Izhevsk State Technical Universityprimat@istu.ru
Tenenev Valentin A.Kalashnikov Izhevsk State Technical Universitytenenev@istu.ru
Всего: 4

References

Тененев В.А., Якимович Б.А. Генетические алгоритмы в моделировании систем. Ижевск: Изд-во ИжГТУ, 2010. 308 с.
Hairer E., Norsett S.P., Wanner G. Solving Ordinary Differential Equations. Vol. 1. Berlin: Springer-Verlag, 1991. 528 p.
Русяк И.Г., Карпов А.И., Королев С.А., Карсканов С.А. Расчет траектории движения снаряда в атмосфере с учетом гидродинамики его обтекания // Вопросы оборонной техники. Серия 14. 2015. Вып. 2. С. 130-141.
Королев С.А., Карсканов С.А. Математическое моделирование обтекания тела вращения сверхзвуковым потоком газа // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки, 2014. №3. С. 123-133.
Королев С.А., Липанов А.М., Русяк И.Г. К вопросу о точности решения прямой задачи внешней баллистики // Вестник Томского государственного университета. Математика и механика. 2017. № 47. С. 63-74.
Дмитриевский А.А., Лысенко Л.Н. Внешняя баллистика. М.: Машиностроение, 2005. 608 с.
 Development of the approaches for solving an inverse problem of external ballistics in various application conditions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/6

Development of the approaches for solving an inverse problem of external ballistics in various application conditions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/6

Download full-text version
Counter downloads: 607