Distinctive features of the heat propagation from a local | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/9

Distinctive features of the heat propagation from a local

The results of studying the propagation time of thermal disturbance in a cylindrical fluid layer caused by a localized heating from below are obtained. The temperature of the fluid near the upper isothermal boundary is measured. By recording the temperature above the heater, the heat propagation time is measured from the moment the heater is turned on till the temperature sensor comes into action both in the static case and under conditions of high-frequency longitudinal and transverse vibrations (the frequency is equal to 6 Hz, the amplitude is equal to 4 mm). For the same conditions, a comparison of the temperature drop inside the column of heated fluid at a steady-state flow is carried out. The assessment of heat loss inside the heated fluid column is performed on the basis of temperature measurements for a steady-state jet. Although the paper emphasized the need to take into account the delay associated with the finite time of heat transfer from the heat source to the fluid, it was not possible to comprehend the development of the flow immediately after the heating was turned on due to the absence of visualizing particles or dye in the fluid.

Download file
Counter downloads: 162

Keywords

теплоперенос, локальный источник тепла, высокочастотные вибрации, температурные измерения, heat transfer, local heat source, high-frequency vibrations, temperature measurements

Authors

NameOrganizationE-mail
Sboev Ivan O.Perm State Universityivan-sboev@yandex.ru
Goncharov Matvey M.Perm State University123goncharov@mail.ru
Всего: 2

References

Hernandez R.H. Natural convection in thermal plumes emerging from a single heat source // Int. J. Thermal Sciences. 2015. V. 98. P. 81-89.
Kondrashov A., Burkova E. Stationary convective regimes in a thin vertical layer under the local heating from below // Int. J. Heat and Mass Transfer. 2018. V. 118. P. 58-65.
Lappa M. Single-and multi-droplet configurations out of thermodynamic equilibrium: Pulsating, traveling, and erratic fluiddynamic instabilities // New Colloid and Surface Science Research. 2007. P. 1-58.
Xi H.D., Lam S., Xia K.Q. From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection // J. Fluid Mechanics. 2004. V. 503. P. 47-56.
Bergman T.L., Incropera F.P., Lavine A.S. Fundamentals of heat and mass transfer. 7th ed. UK: Wiley. 2011. 912 p.
Martynenko O.G., Khramtsov P.P. Free-convective heat transfer: with many photographs of flows and heat exchange. Berlin; Heidelberg: Springer, 2010. 518 p.
Lappa M. Some considerations about the symmetry and evolution of chaotic Rayleigh-Bénard convection: The flywheel mechanism and the “wind” of turbulence // Comptes Rendus Mécanique. 2011. V. 339. Iss. 9. P. 563-572.
Sheremet M.A. Interaction of two-dimensional thermal «plumes» from local sources of energy under conditions of conjugate natural convection in a horizontal cylinder // J. Applied Mechanics and Technical Physics. 2012. V. 53. Iss. 4. P. 566-576.
Гибанов Н.С., Шеремет М.А. Влияние формы и размеров локального источника энергии на режимы конвективного теплопереноса в квадратной полости // Компьютерные исследования и моделирование. 2015. Т. 7. № 2. С. 271-280.
Whitehead J.A. et al. Numerical calculations of two-dimensional large Prandtl number convection in a box // J. Fluid Mechanics. 2013. V. 729. P. 584-602.
Marques F., Lopez J.M. Spontaneous generation of a swirling plume in a stratified ambient // Journal of fluid mechanics. 2014. V. 761. P. 443-463.
Keken P.E., Davaille A., Vatteville J. Dynamics of a laminar plume in a cavity: The influence of boundaries on the steady state stem structure // Geochemistry, Geophysics, Geosystems. 2013. V. 14. Iss. 1. P. 158-178.
Kondrashov A., Sboev I., Rybkin K. Effect of boundary conditions on thermal plume growth // Heat and Mass Transfer. 2016. V. 52. Iss. 7. P. 1359-1368.
Majumder C.A Hier Yuen D.A. Vincent A.P. Four dynamical regimes for a starting plume model // Physics of Fluids (1994-present). 2004. V. 16. Iss. 5. P. 1516-1531.
Гаврилов К.А., Демин В.А., Попов Е.А. Режимы всплытия тепловых плюмов в вертикальном слое // Вычислительная механика сплошных сред. 2013. Т. 6. № 3. С. 261-268.
Lappa M. Thermal Convection: Patterns, Evolution and Stability. UK: Wiley, 2010. 670 p.
Davaille A. et al. Anatomy of a laminar starting thermal plume at high Prandtl number // Experiments in Fluids. 2011. V. 50. Iss. 2. P. 285-300.
Kumagai I., Davaille A., Kurita K. On the fate of thermally buoyant mantle plumes at density interfaces // Earth and Planetary Science Letters. 2007. V. 254. Iss. 1-2. P. 180-193.
Eckert K., Grahn A. Plume and finger regimes driven by an exothermic interfacial reaction // Physical review letters. 1999. V. 82. Iss. 22. P. 4436-4439.
Aminossadati S.M., Ghasemi B. A numerical study of mixed convection in a horizontal channel with a discrete heat source in an open cavity // Eur. J. Mechanics-B/Fluids. 2009. V. 28. Iss. 4. P. 590-598.
Elsherbiny S.M., Ragab E.H. Laminar natural convection in inclined rectangular cavities with a localized heat source // Alexandria Engineering J. 2013. V. 52. Iss. 3. P. 249-257.
Boubnov B.M., Heijst G.J.F. Experiments on convection from a horizontal plate with and without background rotation // Experiments in fluids. 1994. V. 16. Iss. 3-4. P. 155-164.
Бабушкин И.А., Демин В.А., Кондрашов А.Н., Пепеляев Д.В. Тепловая конвекция в ячейке Хеле-Шоу при действии центробежных сил // Изв. РАН. Механика жидкости и газа. 2012. Т. 47. №. 1. С. 14-25.
Legay M. et al. Enhancement of heat transfer by ultrasound: review and recent advances // Int. J. Chemical Engineering. 2011. V. 2011. P.1-17.
Elicer-Cortes J.C. et al. Experimental study of transition to turbulence of a round thermal plume by ultrasound scattering // Experimental thermal and fluid science. 2000. V. 20. Iss. 3-4. P. 137-149.
Fu W.S., Shieh W.J. Transient thermal convection in an enclosure induced simultaneously by gravity and vibration // Int. J. Heat and Mass Transfer. 1993. V. 36. Iss. 2. P. 437-452.
Bronfenbrener L., Grinis L., Korin E. Experimental study of heat transfer intensification under vibration condition // Chemical Engineering & Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology. 2001. V. 24. Iss. 4. P. 367-371. DOI: https://doi.org/10.1002/1521-4125(200104)24:4<367::AID-CEAT367>3.0.CO;2-P
Колмычков В.В. и др. Численное исследование устойчивости валиковой конвекции // Известия Российской академии наук. Механика жидкости и газа. 2009. № 4. С. 14-28.
Fu W.S., Tong B.H. Numerical investigation of heat transfer from a heated oscillating rectangular cylinder in a cross flow // Numerical Heat Transfer: Part A: Applications. 2001. V. 39. Iss. 6. P. 569-591.
Kaminski E. Jaupart C. Laminar starting plumes in high-Prandtl number fluids // J. Fluid Mech. 2003. V. 478. P. 287-298.
Moses E. et al. An experimental study of laminar plumes // J. Fluid Mechanics. 1993. V. 251. P. 581-601.
Cagney N. et al. Temperature and velocity measurements of a rising thermal plume // Geochemistry, Geophysics, Geosystems. 2015. V. 16. Iss. 3. P. 579-599.
Бабушкин И. А. и др. Развитие теплового плюма в узком вертикальном слое // Вестник Томского государственного университета. Математика и механика. 2015. T. 2. № 34. С 41-51.
Kondrashov A., Sboev I., Dunaev P. Evolution of convective plumes adjacent to localized heat sources of various shapes // International Journal of Heat and Mass Transfer. 2016. V. 103. P. 298-304.
 Distinctive features of the heat propagation from a local | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/9

Distinctive features of the heat propagation from a local | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 57. DOI: 10.17223/19988621/57/9

Download full-text version
Counter downloads: 607