On the class of two-dimensional geodesic curves in the field of the gravity force | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 58. DOI: 10.17223/19988621/58/1

On the class of two-dimensional geodesic curves in the field of the gravity force

In this paper, without using methods of variational calculus, the problem of finding a geodesic in a curved space with respect to gravitational and dissipative forces was solved. Solving it, we use the most convenient polar coordinates r,ф . The basic assumption relies on the fact that dynamical motion equations written in curvilinear coordinates in which the Riemann curvature R is different from zero rather strongly differ from similar equations in the case of a flat space. To obtain the required equation of a geodesic arc, a contravariant vector of the velocity dxi vl =- was introduced. For this vector, with regard to all active forces, the following equation dt was solved: dvik , i F' -T + n,vkv' = gi +- , dt m gi are acceleration components of the gravitational force of the two-dimensional r-ф space, and the dissipative force is F' = k1ikNk + k2vi, k1ik are tensor components of the dry friction, k2 is the coefficient of the viscous friction, and N i are the force components. Provided that the scalar curvature of Riemann is different from zero, дГ дГф2 r = фф___гф + Гr ГФ - ГФ Гr = - Ф 0 dr dr фф Фг Фг фф r 2 ' a nonlinear system of differential equations governing the required geodesic was obtained in the polar coordinates r and ф: F r - rep2 = g sin ф + -cos (а -ф), m F rep + 3np = - g cos ф --sin (а - ф), m where r = |r| = |ix + jy| is the length of the radius-vector drawn from the origin of coordinates to the observation point M lying on the geodesic line y = y(x), ф is the polar angle of the reference point, and a is the acute angle between the tangent drawn to the point of M and to axis of abscissas. The analytical and numerical solutions of this system in the absence of the resistance forces, i.e. Fjr = 0 , showed the great difference between the found geodesic and the parabola typical for the case of free fall of bodies in the gravitational field in Euclidean space. AMS Mathematical Subject Classification: 53Z05

Download file
Counter downloads: 178

Keywords

геодезическая, тензор Римана, динамические уравнения, geodesic, Riemann tensor, dynamical equations

Authors

NameOrganizationE-mail
Gladkov Sergei O.Moscow Aviation Institutesglad51@mail.ru
Bogdanova S.B.Moscow Aviation Institutesonjaf@list.ru
Всего: 2

References

Гладков С.О., Богданова С.Б. Геометрический фазовый переход в задаче о брахистохроне // УЗ ФФ МГУ. 2016. № 1. 161101-1-5.
Гладков С. О. О траектории движения тела, входящего в жидкость под произвольным углом // УЗ ФФ МГУ. 2016. № 4. 164101-1-5.
Гладков С.О., Богданова С.Б. Обобщенные динамические уравнения плоского криволинейного движения материального тела по желобу с учетом сил трения (их численный анализ в некоторых частных случаях) // УЗ ФФ МГУ. 2017. № 1. 171101-1-5.
Мак Коннел Дж. Введение в тензорный анализ с приложениями к геометрии, механике и физике. М.: Физматлит, 1963. 411 с.
Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Физматлит, 2003. 536 с.
 On the class of two-dimensional geodesic curves in the field of the gravity force | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 58. DOI: 10.17223/19988621/58/1

On the class of two-dimensional geodesic curves in the field of the gravity force | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 58. DOI: 10.17223/19988621/58/1

Download full-text version
Counter downloads: 574