Left-invariant almost para-Hermitian structures on some sixdimensional nilpotent Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 58. DOI: 10.17223/19988621/58/4

Left-invariant almost para-Hermitian structures on some sixdimensional nilpotent Lie groups

As is well known, there are 34 classes of isomorphic simply connected six-dimensional nilpotent Lie groups. Of these, only 26 classes admit left-invariant symplectic structures and only 18 classes admit left-invariant complex structures. There exist five six-dimensional nilpotent Lie groups G, which do not admit neither symplectic, nor complex structures and, therefore, can be neither almost pseudo-Kahlerian, nor Hermitian. It is the Lie groups that are studied in this work. The aim of the paper is to define new left-invariant geometric structures on the Lie groups. If the left-invariant 2-form ю on such a Lie group is closed, then it is degenerate. Weakening the closedness requirement for left-invariant 2-forms ю, stable 2-forms ю are obtained. Their exterior differential dw is also stable in Hitchin sense. Therefore, the pair (ю, di») defines either an almost Hermitian or almost para-Hermitian structure on the group G. The corresponding pseudo-Riemannian metrics are Einstein for four of the five Lie groups under consideration. This gives new examples of multiparameter families of left-invariant Einstein pseudo-Riemannian metrics on six-dimensional nilmanifolds. On each of the Lie groups under consideration, compatible and normalized pairs of left-invariant forms (ю, p), where p = dm, are obtained. They define semi-flat structures. The Hitchin flow on G x / is studied to construct a pseudo-Riemannian metric on G x / with a holonomy group from G2* and it is shown that there is nots solution in this class of left-invariant half-plane structures (ю, p). For structures (ю, p), only the 3-form closure property Ф = ffiAdt + dw on Gx/ holds. AMS Mathematical Subject Classification: 53C15, 53C30, 53C25, 22E25

Download file
Counter downloads: 149

Keywords

нильмногообразия, шестимерные нильпотентные алгебры Ли, левоинвариантные пара-комплексные структуры, эйнштейновы многообразия, полуплоские структуры, nilmanifolds, six-dimensional nilpotent Lie algebras, left-invariant para-complex structures, Einstein manifolds, half-flat structures

Authors

NameOrganizationE-mail
Smolentsev Nikolay K.Kemerovo State Universitysmolennk@mail.ru
Всего: 1

References

Salamon S. Complex structures on nilpotent Lie algebras // J. Pure Appl. Algebra. 2001. V. 157. P. 311-333. doi.org/10.1016/S0022-4049(00)00033-5.
Goze M., Khakimdjanov Y., Medina A. Symplectic or contact structures on Lie groups // Diff. Geom. Appl. 2004. V. 21. No. 1. P. 41-54. doi.org/10.1016/j.difgeo.2003.12.006.
Benson C., Gordon C.S. Kahler and symplectic structures on nilmanifolds // Topology. 1988. V. 27. P. 513-518.
Cordero L.A., Fernandez M., Ugarte L. Pseudo-Kahler metrics on six-dimensional nilpotent Lie algebras // J. of Geom. and Phys. 2004. V. 50. P. 115-137. doi:10.1016/j.geomphys. 2003.12.003.
Смоленцев Н.К. Канонические псевдокэлеровы метрики на шестимерных нильпотент-ных группах Ли // Вестник КемГУ. 2011. № 3/1 (47). С. 155-168 (arXiv: 1310.5395 [math.DG]).
Smolentsev N.K. Canonical almost pseudo-Kahler structures on six-dimensional nilpotent Lie groups. 2013. arXiv: 1311.4248 [math.DG]. 26 p.
Cortes V., Letstner T., Schafer L., Schulte -Hengesbach F. Half-flat structures and special holonomy // Proc. London Math. Soc. 2011. V. 102. No. 1. P. 113-158. DOI: 10.1112^^^012 (arXiv:0907.mnv1 [math.DG])
Smolentsev N.K. Left-invariant almost para-complex Einsteinian structures on six-dimensional nilpotent Lie groups // Science Evolution. 2017. V. 2. No. 2. P. 88-95.
Kobayash, S. and Nom,zu K. Foundations of Differential Geometry. Vol. 1 and 2. New York; London: Interscience Publ., 1963.
Hitchin N.J. The geometry of three-forms in six dimensions // J. Diff. Geom. 2000. V. 55. P. 547-576. doi:10.4310/jdg/1090341263.
Алексеевский Д.В.,Медори К., Томассини А. Однородные пара-кэлеровы многообразия Эйнштейна // УМН. 2009. Т. 64. Вып. 1(385). C. 3-50. DOI: https://doi.org/10.4m3/ rm9262.
Hitchin N. Stable forms and special metrics // Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000). P. 70-89. DOI: http://dx.doi.org/10.1090/conm/288. (arXiv:math/0107101v1 [math.DG]).
Conti D. Half-flat nilmanifolds // Math. Ann. 2011. V. 350(1). P. 155-168. (arXiv:0903.1175 [math.DG]).
 Left-invariant almost para-Hermitian structures on some sixdimensional nilpotent Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 58. DOI: 10.17223/19988621/58/4

Left-invariant almost para-Hermitian structures on some sixdimensional nilpotent Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 58. DOI: 10.17223/19988621/58/4

Download full-text version
Counter downloads: 574