Numerical investigation of non-Newtonian fluid flow through a pipe sudden contraction
Sudden contraction represents a geometrical heterogeneity leading to the significant flow structure changes and intensifying energy losses. The fluid flowing through a sudden contraction is of great scientific interest as it is found to be an intermediate stage of the processes taking place in a technical equipment such as pumps, engines, reactors, etc. In this paper, the problem of a laminar stationary flow of non-Newtonian fluid in a pipe with sudden contraction was numerically solved. The fluid rheological properties were described by the Ostwald-de Waele power law. The constitutive equations were written using the stream function and vorticity variables in a cylindrical coordinate system. The asymptotic time solution to the unsteady flow equations was obtained in order to derive a steady-state solution to the initial problem. The main equations were discretized using the finite-difference method based on the alternative directions scheme and solved using the sweep method. To verify numerical algorithm developed, the approximating convergence was tested on the sequence of square grids. According to the flow patterns, pseudoplastic and dilatant fluid flow structures both consist of one-dimensional zones next to the inlet and outlet sections and two-dimensional zones in the vicinity of contraction plane. To evaluate the impact of the Reynolds number, pipe contraction ratio, and power-law index on the length of two-dimensional flow regions, the dependency diagrams were plotted in a wide range of the parameters. Two different methods were used to calculate the local resistance coefficient. The obtained values were found to be in a good agreement. A parametric study was performed to reveal the influence of the governing parameters on the local energy losses.
Keywords
внезапное сужение,
неньютоновская жидкость,
модель Оствальда - де Виля,
схема продольно-поперечной прогонки,
кинематические характеристики потока,
число Рейнольдса,
местное сопротивление,
sudden contraction,
non-Newtonian fluid,
power-law model,
sweep method,
flow kinematic characteristics,
Reynolds number,
local resistanceAuthors
Borzenko Evgeniy I. | Tomsk State University | borzenko@ftf.tsu.ru |
Ryltseva Kira E. | Tomsk State University | kiraworkst@gmail.com |
Shrager Gennady R. | Tomsk State University | shg@ftf.tsu.ru |
Всего: 3
References
Astarita G., Greco G. Excess pressure drop in laminar flow through sudden contraction. Non-Newtonian liquids // Industrial & Engineering Chemistry Fundamentals. 1968. V. 7. No. 4. P. 595-598.
Rama Murthy A.V., Boger D.V. Developing velocity profiles on the downstream side of a contraction for inelastic polymer solutions // Transactions of the Society of Rheology. 1971. V. 15. Iss. 4. P. 709-730.
Kestin J., Sokolov M., Wakeham W. Theory of capillary viscometers // Applied Scientific Research. 1973. V. 27. Iss. 1. P. 241-264.
Walters K., Webster M.F. The distinctive CFD challenges of computational rheology // Int. J. Numer. Meth. Fluids. 2003. V. 43. P. 577-596.
Mitsoulis E., Vlachopoulos J. Effect of Reynolds number in laminar flow through a sudden planar contraction // AlChE Journal. 1985. V. 31. No. 10. P. 1736-1739.
Huaxiong Huang, Seymour B.R. A finite difference method for flow in a constricted channel // Computers & Fluids. 1995. V. 24. No. 2. P. 153-160.
Luo X.-L. A control volume approach for integral viscoelastic models and its application to contraction flow of polymer melts // J. Non-Newtonian Fluid Mech. 1996. V. 64. Iss. 2-3. P. 173-189.
Alves M.A., Pinho F.T., Oliveira P.J. Effect of a high-resolution differencing scheme on finite-volume predictions of viscoelastic flows // J. Non-Newtonian Fluid Mech. 2000. V. 93. P. 287-314.
Dennis S.C.R., Smith F.T. Steady flow through a channel with a symmetrical constriction in the form of a step // Proc. R. Soc. Lond. A. 1980. V. 372. P. 393-414.
Chiang T.P., Sheu T.W.H., Hwang R.R. Numerical studies of a three-dimensional flow in suddenly contracted channels // Physics of Fluids. 2002. V. 14. No. 5. P. 1601-1616.
Lee Keegan F. Experimental investigation into non-Newtonian fluid flow through gradual contraction geometries: Thesis. University of Liverpool, 2009. 160 p.
Борзенко Е.И., Рыльцева К.Е., Фролов О.Ю., Шрагер Г.Р. Расчет коэффициента местного сопротивления для течения вязкой несжимаемой жидкости в трубе с внезапным сужением // Вестник Томского государственного университета. Математика и механика. 2017. № 48. C. 36-48.
Gupta M., Hieber C.A., Wang K.K. Entrance effects for power-law fluid // Polymer Engineering and Science. 1994. V. 34. No. 3. P. 209-212.
Трегубое В.П., Жуков Н.К. Компьютерное моделирование потока крови при наличии сосудистых патологий // Российский журнал биомеханики. 2017. Т. 21. № 2. С. 201-210.
Pienaar V.G. Viscous flow through sudden contractions / Dis. Cape Peninsula University of Technology, 2004. 198 p.
Годунов С.К., Рябенький В.С. Разностные схемы. М.: Наука, 1977. 440 c.
Самарский А.А. Введение в теорию разностных схем. М.: Наука, 1971. 553 с.
Шрагер Г.Р., Козлобродов А.Н., Якутенок В.А. Моделирование гидродинамических процессов в технологии переработки полимерных материалов. Томск: Изд-во Том. унта, 1999. 230 c.
Идельчик И.Е. Справочник по гидравлическим сопротивлениям / под ред. М.О. Штейнберга. 3-е изд. М.: Машиностроение, 1992. 672 с.
Tiu C., Boger D.V., Halmos A.L. Generalized method for predicting loss coefficients in entrance region flows for inelastic fluids // The Chemical Engineering Journal. 1972. V. 4. Iss. 2. P. 113-117.
Кочин Н.Е., Кибель И.А., Розе Н.В. Теоретическая гидромеханика. Ч. 2. 4-е изд. М.: Физматлит, 1963. 728 с.
Kfuri S.L.D., Silva J.Q., Soares E.J., Thompson R.L. Friction losses for power-law and visco-plastic materials in an entrance of a tube and an abrupt contraction // J. Petroleum Science and Engineering. 2011. V. 76. Iss. 3-4. P. 224-235.
Kim-E.M.E., Brown R.A., Armstrong R.C. The roles of inertia and shear-thinning in flow of an inelastic liquid through an axisymmetric sudden contraction // J. Non-Newtonian Fluid Mechanics. 1983. V. 13. P. 341-363.
Kfuri S.L.D., Soares E.J., Thompson R.L., Siqueira R.N. Friction coefficients for Bingham and power-law fluids in abrupt contractions and expansions // J. Fluids Engineering. 2017. V. 139(2). P. 1-8.