On the module of continuity of mappings with an s-averaged characteristic | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 59. DOI: 10.17223/19988621/59/2

On the module of continuity of mappings with an s-averaged characteristic

We continue studying analytical properties of non-homeomorphic mappings with an s-averaged characteristic. O. Martio proposed the theory of Q-homeomorphisms (2001). The concept of Q-homeomorphisms was extended to maps with branching (2004). In this paper, we study analytical properties of non-homeomorphic mappings with an saveraged characteristic and consider the question of continuity of mappings with an saveraged characteristic. By the well-known Sobolev theorem, a function of class Ws1,loc(Rn ) for is equivalent to a continuous function. This property does not hold when s < n. The authors presented such example for mappings with an s-averaged characteristic in 2016. In this paper, we generalize the result obtained earlier to a more general class of mappings with an s-averaged characteristic. Relevant examples are built. The purpose of this paper is to indicate the necessary conditions under which mappings from classes and subclasses of mappings with an s-averaged characteristic 1s1,loc(Rn . The theorem is an analogue of the Mori lemma.

Download file
Counter downloads: 178

Keywords

отображения с s-усредненной характеристикой, модуль непрерывности, класс, spatial mappings with an s-averaged characteristic, modulus of continuity, mapping class

Authors

NameOrganizationE-mail
Malyutina Aleksandra N.Tomsk State Universitynmd@math.tsu.ru
Asanbekov Urmat K.Tomsk State Universityurmat_1396@mail.ru
Всего: 2

References

Соболев С. Л. Некоторые применения функционального анализа в математической физике. Л.: ЛГУ, 1950. 255 с.; Новосибирск, 1962. 255 с.
Никулина Н.Г., Малютина А.Н. О непрерывности функций одного класса // Экстремальные задачи теории функций: сб. Томск: Изд-во Том. ун-та. 1983. С. 47-52.
Елизарова М. А., Малютина А. Н. Отображения с s- усредненной характеристикой. Определение и свойства. LAP LAMBERT Academic Publishing, 2013.144 p.
Асанбеков У.К., Малютина А.Н. Вычисление модуля сферического кольца // Комплексный анализ и приложения: материалы VIII Петрозаводской Международной конференции. 2016. С. 103-106.
Alipova K., Elizarova M., Malyutina A. Examples of the mappings with s-averaged characteristic // Комплексный анализ и его приложения: материалы VII Петрозаводской Международной конференции. 2014. С. 12-17.
Ладыженская О.А., Уральцева Н.Н. Линейные и квазилинейные уравнения эллиптического типа. М.: Наука, 1973.
Сингулярные интегралы и дифференциальные свойства функций. М.: Мир, 1973.
 On the module of continuity of mappings with an <i>s</i>-averaged characteristic | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 59. DOI: 10.17223/19988621/59/2

On the module of continuity of mappings with an s-averaged characteristic | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 59. DOI: 10.17223/19988621/59/2

Download full-text version
Counter downloads: 647