Experimental study of the influence of heat flux capacity on the ignition and charring characteristics of wood construction materials by using infrared diagnostics | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 59. DOI: 10.17223/19988621/59/7

Experimental study of the influence of heat flux capacity on the ignition and charring characteristics of wood construction materials by using infrared diagnostics

Much heat is released during the propagation of ground and crown fires, which can be a reason of wood construction firing in the settlements located near the forest border. There are a great number of experimental studies on the fire hazard of wooden materials. However, the available data require additional experimental results to study the fire-hazardous characteristics of various construction materials by using infrared diagnostics. The paper presents the results of experimental study of the impact of heat flux emitted by a standard source on the charring and ignition characteristics of wood construction materials using thermography. The effect of various fire retardants on the charring rate and depth of the samples as well as the ignition time are analyzed. The following widespread wood construction materials are used as studied samples: plywood, chipboard, and oriented strand board. As a result of experimental studies carried out using thermocouples and infrared camera, a good agreement in the maximum temperature on the surface exposed to the heat effect was obtained. The use of the fire retardant impregnation results in an increase in the ignition time of the sample. At the same time it does not eliminate a possibility of the flame occurrence on the sample surface. The experimental method proposed in this paper allows one to estimate the charring depth and rate of the material exposed to the heat flux effect, and to determine the ignition time.

Download file
Counter downloads: 214

Keywords

тепловой поток, древесные строительные материалы, ИК-диагностика, обугливание, воспламенение, огнезащита, heat flux, wood construction materials, infrared diagnostics, charring, ignition, fire protection

Authors

NameOrganizationE-mail
Kasymov Denis P.Tomsk State Universitydenkasymov@gmail.com
Agafontsev Mikhail V.Tomsk State Universitykim75mva@gmail.com
Perminov Vladislav V.Tomsk State Universityya.vladperminov2013@yandex.ru
Reyno Vladimir V.V.E. Zuev Institute of Atmospheric Optics SB RASreyno@iao.ru
Martynov Pavel S.Tomsk State Universitymartypavel@bk.ru
Всего: 5

References

Асеева Р.М., Серков Б.Б., Сивенков А.Б. Горение и пожарная опасность древесины // Пожаровзрывобезопасность. 2012. № 21 (1). С. 19-32.
Chandler C., Cheney P., Thomas P., Trabaud L., Williams D. Forest fire behavior and effects (Fire in Forestry). New York: John Wiley and Sons, 1983. V. 1. 450 p.
Гришин А. М. Общая физико-математическая модель зажигания и горения древесины // Вестник Томского государственного университета. Математика и механика. 2010. № 2. C. 60-70. URL: http://vital.lib.tsu.ru/vital/access/manager/Repository/vtls:000461276
North M., Stephens S., Collins B.M. Using fire to increase the scale, benefits, and future maintenance of fuels treatments // J. Forestry. 2012. V. 110. Iss. 7. P. 392-401. DOI: https://doi.org/10.5849/jof.12-021.
Campbell J.L., Ager A.A. Forest wildfire, fuel reduction treatments, and landscape carbon stocks: A sensitivity analysis // Journal of Environmental Management. 2013. V. 121. P. 124132. DOI: https://doi.org/10.1016/j.jenvman.2013.02.009.
Rehm R.G., Hamins A., Baum H.R., McGrattan K.B., Evans D.D. Community-scale fire spread // Proceedings of the California's 2001 Wildfire Conference, California. 2002. P. 126-139.
Morandini F., Silvani X. Experimental investigation of the physical mechanisms governing the spread of wildfires // Int. J. Wildland Fire. 2010. V. 19. Iss. 5. P. 570-582. DOI: 10.1071/WF08113.
Filkov A.I., Prohanov S.A., Mueller E., Kasymov D.P. Martynov P., Houssami M., Thomas J.C., Skowronski N., Butler B., Gallagher M.R., Clark K., Mell W., Kremens R., Hadden R.M., Simeoni A. Investigation of firebrand production during prescribed fires conducted in a pine forest // Proceedings of the Combustion Institute. 2017. V. 36. Iss. 2. P. 3263-3270. DOI: 10.1016/j.proci.2016.06.125.
Sullivan A. L. Wildland surface fire spread modelling, 1990-2007. 1: Physical and quasiphysical models // Int. J. Wildland Fire. 2009. V. 18. P. 349-368. DOI: https://doi.org/ 10.1071/WF06143.
Babrauskas V. Charring rate of wood as a tool for fire investigations // Fire Safety Journal. 2005. V. 40. P. 528-554. DOI:10.1016/j.firesaf.2005.05.006.
Grishin A.M., Filkov A.I., Loboda E.L., Reyno V.V., Kozlov A.V., Kuznetsov V.T., Kasymov D. P., Andreyuk S.M., Ivanov A.I. A Field Experiment on Grass Fire Effects on Wooden Constructions and Peat Layer Ignition // Int. J. Wildland Fire. 2014. V. 23. P. 445-449.
Uirle S., Balog K. The effect of the heat flux on the self-ignition of oriented strand board // Research Papers Faculty of Materials Science and Technology in Trnava. 2017. V. 25. Iss. 40. P. 123-129.
Bartlett A.I., Uadden R.M., Bisby L.A. A review of factors affecting the burning behaviour of wood for application to tall timber construction // Fire Technology. 2019. V. 55. Iss. 1. P. 1-49.
Hedayati F., Yang W., Zhou A. Effects of moisture content and heating condition on pyrolysis and combustion properties of structural fuels // Fire and Materials. 2018. V. 42. Iss. 7. P. 741-749.
Polishchuk E.Yu., Sivenkov A.B., Kenzhehan S.K. Heating and charring of timber constructions with thin-layer fire protection // Magazine of Civil Engineering. 2018. V. 81. Iss. 5. P. 3-14. DOI: 10.18720/MCE.81.1.
Hasburgh L. E., Stone D. S., Zelinka S. L. Laboratory investigation of fire transfer from exterior wood decks to buildings in the Wildland-Urban interface // Fire Technology. 2017. V. 53. Iss. 2. P. 517-534. DOI:10.1007/s10694-016-0588-0.
Vermesi I., Di Domizio M.J., Richter F., Weckman E.J., Rein G. Pyrolysis and spontaneous ignition of wood under transient irradiation: Experiments and a-priori predictions // Fire Safety Journal. 2017. V. 91. P. 218-225. DOI:10.1016/j.firesaf.2017.03.081.
Мельников В.С., Хасанов И.Р., Кириллов С.В., Васильев В.Г., Ванин С.А., Щербаков М.И., Гарсков Р.В. Термографирование при огневых испытаниях фрагментов зданий и строительных конструкций // Пожарная безопасность. 2015. № 3. С. 83-90.
Мельников В.С., Хасанов И.Р., Кириллов С.В., Васильев В.Г., Ванин С.А., Потемкин С.А. Натурные огневые испытания фрагментов зданий из сэндвич-панелей // Пожарная безопасность. 2016. № 2. С. 120-127.
Асеева Р.М., Серков Б.Б., Сивенков А.Б. Горение древесины и ее пожароопасные свойства: монография. М.: Академия ГПС, 2010. 262 с.
Вавилов В.П. Инфракрасная термография и тепловой контроль. М.: ИД Спектр, 2009. 544 с.
O'Brien J.J., Loudermilk E.L., HornsЬy B., Hudak A.T., Bright B.C., Dickinson M.B., Hiers J.K., Teske C., Ottmar R.D. High-resolution infrared thermography for capturing wildland fire behaviour: RxCADRE 2012 // Int. J. Wildland Fire. 2016. V. 25. P. 62-75. DOI: 10.1071/WF14165.
Rios O., Pastor E., Valero M.M., Planas E. Short-term fire front spread prediction using inverse modelling and airborne infrared images // Int. J. Wildland Fire. 2016. V. 25. P. 10331047. DOI: http://dx.doi.org/10.1071/WF16031.
Sofan P., Bruce D., Jones E., Marsden J. Detecting peatland combustion using shortwave and thermal infrared landsat-8 data // Advances in Forest Fire Research. 2018. P. 969-979. DOI: https://doi.org/10.14195/978-989-26-16-506_106.
Valero M.M., Jimenez D., Butler B., Mata C., Rios O., Pastor E., Planas E. On the use of compact thermal cameras for quantitative wildfire monitoring // Advances in Forest Fire Research. 2018. P. 1077-1086. DOI: https://doi.org/10.14195/978-989-26-16-506_119.
Лобода Е.Л., Касымов Д.П., Фильков А.И., Рейно В.В., Агафонцев М.В. Некоторые аспекты исследования в полевых и лабораторных условиях природных пожаров с применением термографии // Актуальные проблемы пожарной безопасности: тез. докл. XXX Междунар. науч.-практ. конф. М.: ВНИИПО. 2018. С. 295-300.
Kasymov D.P., Agafontsev M.V., Perminov V.V. Estimation of the influence of wood-fire retardants on fire behavior of some types of wood construction materials // J. Physics: Conference Series. 2018. V. 1105. P. 1-7. DOI: 10.1088/1742-6596/1105/1/012039.
Kasymov D.P., Agafontsev M.V., Perminov V.V., Martynov P. Investigation of the ignition of wood structural materials (with and without fire retardant treatment) under the influence of a model fire of irregular intensity // EPJ Web Conf. 2019. V. 196. DOI: https://doi.org/ 10.1051/epjconf/201919600038.
Лобода Е.Л., Матвиенко О.В., Агафонцев М.В., Рейно В.В. Применение термографии для оценки масштабов турбулентности в пламени // Оптика атмосферы и океана. 2018. Т. 31. № 12. С. 1001-1006. DOI: 10.15372/AOO20181210.
Госсорг Ж. Инфракрасная термография. М.: Мир, 1988. 416 c.
Chernenko V.A. Technology of wood impregnation by polymeric compositions // Construction of Unique Buildings and Structures. 2017. V. 7. Iss. 58. P. 32-52. DOI: 10.18720/ CUBS.58.3.
 Experimental study of the influence of heat flux capacity on the ignition and charring characteristics of wood construction materials by using infrared diagnostics | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 59. DOI: 10.17223/19988621/59/7

Experimental study of the influence of heat flux capacity on the ignition and charring characteristics of wood construction materials by using infrared diagnostics | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 59. DOI: 10.17223/19988621/59/7

Download full-text version
Counter downloads: 647