On zeros of the combination of products of Bessel functions
In this paper, the function fν(t)=Jν(t)I-ν(t)+Iν(t)J-ν(t),0<ν<1, Ret >0, is investigated. Such functions were little studied in the literature. It is proved that more general functions fν,μ(1),(2) (t)=Jν(t)I-μ(t)±Iμ(t)J-ν(t) have a countable set of real zeros and a countable set of pure imaginary zeros. The proof uses the well-known Sturm theorem for second-order differential equations. The statement is applied to specific examples. In the case ν = 1/2, the function f1/2(x) = J1/2(x)I-1/2(x) + I1/2(x)J-1/2(x) is reduced to an elementary function f1/2(x) = 2/
Keywords
Sturm theorem, set of zeros of the function, modified Bessel function, Bessel function, теорема Штурма, множество нулей функции, модифицированная функция Бесселя, функция БесселяAuthors
Name | Organization | |
Gimaltdinova Alfira A. | Ufa State Petroleum Technological University | aa-gimaltdinova@mail.ru |
Anosova Elizaveta P. | Ufa State Petroleum Technological University | ae0809@mail.ru |
References

On zeros of the combination of products of Bessel functions | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/1