Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/3

Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds

The Sieradski groups are defined by the presentation S(m)=〈x1,x2,...,xm |xixi+2 = xi+1, i = 1,...,m〉 where all subscripts are taken by mod m . The generalized Sieradski groups S(m,p,q) are groups with m-cyclic presentation Gm(w) , where word w has a special form depending on coprime integers p and q . We study the problem if a given presentation is geometric, i.e. it corresponds to a spine of a closed orientable 3-manifold. It was shown by Cavicchioli, Hegenbarth, and Kim that the generalized Sieradski group presentation S(m,p,q) corresponds to a spine of some 3-manifold which we denote as M(m,p,q). Moreover, M(m,p,q) are m-fold cyclic coverings of S3 branched over the torus (p,q) -knot. Howie and Williams proved that M (2n,3,2) are n -fold cyclic coverings of the lens space L(3,1) . A. Vesnin and T. Kozlovskaya established that M (2n,5,2) are n-fold cyclic coverings of the lens space L(5,1) . In this paper, we consider generalized Sieradski manifolds M (2n,7,2) n ≥1. We prove that the n-cyclic presentations of their groups are geometric, i.e., correspond to spines of closed connected orientable 3-manifolds. Moreover, manifolds M (2n,7,2) are the n-fold cyclic coverings of the lens space L(7,1) . For the classification some of the constructed manifolds, we use the Recognizer computer program.

Download file
Counter downloads: 199

Keywords

Sieradski group, cyclically presented group, lens space, branched covering, группа Сирадски, three-dimensional manifold, линзовое пространство, группа с циклическим представлением, разветвленное накрытие, трехмерное многообразие

Authors

NameOrganizationE-mail
Kozlovskaya Tatyana A.Tomsk State Universityt.kozlovskaya@math.tsu.ru
Всего: 1

References

Ozsvath P., Szabo Z. Heegaard diagrams and holomorphic disks // International Mathematical Series. 2004. V. 3. P. 301-348.
Singef J. Three-dimensional manifolds and their Heegaard diagrams // Trans. Amer. Math. Soc. 1933. V. 35. No. 1. P. 88-111.
Mulazzani M. Cyclic presentation of groups and cyclic branched covering of (1, 1)-knots // Bull. Korean Math. Soc. 2003. V. 40(1). P. 101-108.
Cейферт Г., Трельфалль В. Топология. Ижевск, 2001. 448 с.
Seifekt H., Webeг C. Die beiden Dodekaedraume // Math. Z. 1933. V. 37. P. 237-253.
Howie J., Williams G. Fibonacci type presentations and 3-manifolds // Topology Appl. 2017. V. 215. P. 24-34.
Веснин А. Ю., Козловская Т. А. Многообразия Брискорна, обобщенные группы Сирадски и накрытия линзовых пространств // Тр. ИММ УрО РАН. 2017. Т. 23. № 4. С. 85-97.
Thfee-manifold Recognizer. The computer program developed by the research group of S. Matveev in the department of computer topology and algebra of Chelyabinsk State University. URL: http://matlas.math.csu.ru
Siemdski A.J. Combinatorial squashings, 3-manifolds, and the third homology of groups // Invent. Math. 1986. V. 84. P. 121-139.
Gfasselli L., Mulazzani M. Genus one !-bridge knots and Dunwoody manifolds // Forum Mathematicum. 2001. V. 13. No 3. P. 379-397.
Maclachlan C., Reid A.W. Generalised Fibonacci manifolds // Transform. Groups. 1997. V. 2. No. 2. P. 165-182.
Hilden H., Lozano M., Montesinos-Amilibia J. The arithmeticity of the figure eight knot orbifolds // Topology '90 Ohio State Univ. Math. Res. Inst. Publ., Walter de Gruyter, Berlin. 1992. V. 1. P. 169-183.
Johnson D., Wamsley J., Wfight D. The Fibonacci Groups // Proc. London Math. Soc., III. Ser. 1974. V. 29. No. 4. P. 577-592.
Kim A.C., Kim Y., Vesnin A. On a class of cyclically presented groups // Proc. Intern. Conf. Groups-Korea '98. Berlin; New York: Walter de Gruyter, 2000. P. 211-220.
Kim A.C. On the Fibonacci group and related topics // Proc. conf. algebra, 1991, Barnaul, Russia (Contemp. Math., 184), Providence, RI, Am. Math. Soc. 1995. P. 231-235.
Веснин А. Ю., Ким А. Ч. Дробные группы Фибоначчи и многообразия // Сиб. матем. журнал. 1998. Т. 39. № 4. С. 765-775.
Dunwoody M.J. Cyclic presentations and 3-manifolds // Proc. Inter. Conf., Groups-Korea '94. Berlin; New York: Walter de Gruyter, 1995. P. 47-55.
Cavicchioli A., Hegenbarth F., Kim A. On cyclic branched coverings of torus knots // J. Geometry. 1999. V. 64. P. 55-66.
Helling H., Kim A.C., Mennicke J.L. A geometric study of Fibonacci groups // J. Lie Theory. 1998. V. 8. P. 1-23.
Stallings J. On the recursiveness of sets of presentations of 3-manifold groups // Fundam. Math. 1962/63. V. 51. P. 191-194.
 Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/3

Cyclically presented Sieradski groups with even number of generators and three dimensional manifolds | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/3

Download full-text version
Counter downloads: 526