Existence and uniqueness of solutions for nonlinear impulsive differential equations with nonlocal boundary conditions
In this paper, we aim to study differential equations х(t) = f (f,х(t)), t ∈ [0,T],t ≠ ti, і = 1,2,...,p, with nonlocal boundary conditions Ax(0)=∫ n(t)x(t)dt=B and subject to impulsive conditions x(ti+)-x(ti)=Ii (x(ti)), i = 1,2,..., p, where 0 = t0 < t1 < ... < tp < tp+1 = T, A ∈ Rn×n, n(t) ∈ Rn×n known matrices such that det N ≠ 0 ,N = A + ∫n(t)dt; f: [0,T]× Rn → Rn and Ii: Rn → Rn are given functions; ∆x(ti) = х(tі+) - х(tі-), where х(tі+) = lim х(ti + h), х(tі-) = lim х(ti - h) = х(/і) are right- and left-hand limits of х(t) at t = ti, respectively. The Green function is constructed and the considered problem is reduced to an equivalent integral equation. The existence and uniqueness of the solutions for the given problem are analyzed using the Banach contraction principle. The Schaefer fixed point theorem is then used to prove the existence of the solutions. The continuous dependence of the solutions on the right side of the boundary conditions is also established. AMS Mathematical Subject Classification: 34B10, 34A37, 34B37.
Keywords
existence and uniqueness of solutions,
continuous dependence of the solutions,
nonlocal boundary conditions,
impulsive systems,
непрерывная зависимость решений,
существование и единственность решений,
нелокальные краевые условия,
Дифференциальные уравнения с импульсными воздействиямиAuthors
Mardanov Misir J. | Institute Mathematics and Mechanics of ANAS | misirmardanov@yahoo.com |
Sharifov Yagub A. | Baku State University | farahzeynalli@rambler.ru |
Zeynally Farah M. | Ganja State University | sharifov22@rambler.ru |
Всего: 3
References
Sharifov Y.A., Mammadova N.B. Optimal control problem described by impulsive differential equations with nonlocal boundary conditions // Differential equations. 2014. V. 50. No. 3. P. 403-411.
5harifov Y.A. Conditions optimality in problems control with systems impulsive differential equations under non-local boundary conditions // Ukrainian Mathematical Journal. 2012. V. 64. No. 6. P. 836-847.
Ashyralyev A., 5harifov Y.A. Existence and uniqueness of solutions for nonlinear impulsive differential equations with two-point and integral boundary conditions // Advances in Difference Equations. 2013. 2013:173.
Шарифов Я.А. Задача оптимального управления для систем с импульсными воздействиями при нелокальных краевых условиях // Вестник Сам. гос. техн. ун-та. Сер. физ.-мат. науки. 2013. № 4(33). С. 34-45.
Шарифов Я.А. Оптимальное управление для систем с импульсными воздействиями при нелокальных краевых условиях // Изв. вузов. Математика. 2013. № 2. С. 75-84.
Ashyralyev A., Sharifov Y.A. Optimal control problems for impulsive systems with integral boundary conditions // EJDE. 2013. No. 80. P. 1-11.
Li M., Han M. Existence for neutral impulsive functional differential equations with nonlocal conditions // Indagationes Mathematicae. 2009. V. 20. No. 3. P. 435-451.
Bin L., Xinzhi L., Xiaoxin L. Robust global exponential stability of uncertain impulsive systems // Acta Mathematika Scientia. 2005. V. 25 B(1). P. 161-169.
Ji Sh., Wen Sh. Nonlocal cauchy problem for impulsive differential equations in Banach spaces // International J. Nonlinear Science. 2010. V. 10. No. 1. P. 88-95.
Annamalai Anguraj, Mani Mallika Arjunan. Existence and uniqueness of mild and classical solutions of impulsive evolution equations // Elect. J. Differential Equations. 2005. No. 111. P. 1-8.
Mardanov M.J., Sharifov Yagub A., Molaei Habib H. Existence and uniqueness of solutions for first-order nonlinear differential equations with two-point and integral boundary conditions // Electronic J. Differential Equations. 2014. No. 259. P. 1-8
Boichuk A.A., Samoilenko A.M. Generalized inverse operators and fredholm boundary-value problems. Utrecht: Brill, 2004.
Boichuk A.A., Samoilenko A.M. Generalized inverse operators and Fredholm boundary-value problems (2nd ed.). Berlin; Boston: Walter de Gruyter GmbH, 2016. 314 p.
Benchohra M., Henderson J., Ntouyas S.K. Impulsive differential equations and inclusions. Contemporary mathematics and its application. New York: Hindawi Publishing Corporation, 2006.
Perestyk N.A., Plotnikov V.A., Samoilenko A.M., Skripnik N.V. Differential equations with impulse effect: multivalued right-hand sides with discontinuities // DeGruyter Stud. Math. Berlin: Walter de Gruter Co., 2011. V. 40.
Samoilenko А.М., Perestyk N.A. Impulsive differential equations. Singapore: World Sci., 1995.
Lakshmikantham V., Bainov D.D., Simeonov P.S. Theory of impulsive differential equations. Singapore: World Scientific, 1989. 434 p.
Халанай А., Векслер Д. Качественная теория импульсных систем. М.: Мир, 1971. 309 с.
Самойленко А.М., Перестюк Н.А. Дифференциальные уравнения с импульсным воздействием. Киев: Вища Школа, 1987. 287 с.