Numerical investigation of the reservoir filling with a newtonian fluid using the VoF-method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/6

Numerical investigation of the reservoir filling with a newtonian fluid using the VoF-method

In this paper, the filling of a plane reservoir, having a central rod, with a fluid under gravity is studied. The flow is described by the Navier-Stokes and continuity equations. On the solid walls, the no-slip boundary conditions are satisfied. The fluid with a fixed flow rate enters the reservoir through the channel on the top. The problem is solved numerically using the control volume method and SIMPLE procedure. The free surface location is determined using the PLIC-VOF method. Mathematical formulation of the problem includes two non-dimensional parameters, namely, the Reynolds number (Re) and the ratio of the gravity forces to the viscous forces in a fluid (W). As a result, four regimes of the reservoir filling have been discovered. When viscous effects dominate over gravitational effects, the regime characterized by draining all-over the lateral grooves is observed, wherein the free surface completely overlaps the lateral grooves. An increase in the gravitational effects leads to the regime characterized by draining down the central rod. In this case, the fluid flows along the central rod walls, then reaches the bottom, and fills in the rest part of the reservoir. Further increase in the inertial effects gives rise to the regime characterized by draining as a jet, and, subsequently, to the regime of draining down the lateral grooves. The kinematic characteristics of the flows are presented. It is shown that in the case of draining all-over the lateral grooves, one-dimensional flow occurs in the lateral grooves and two-dimensional flow occurs in the vicinity of the central rod. In other regimes, dead zones are formed in the vicinity of the bottom. The behavior of the fluid mass distribution over the reservoir is studied. In the regime of draining fluid all-over the lateral grooves, a fountain flow is observed, and in other regimes, the portions of the fluid are distributed in parallel layers. The deformation of the fluid portions during the filling is analyzed. The diagrams illustrating the reservoir filling regimes are presented at various values of Reynolds number and parameter W.

Download file
Counter downloads: 185

Keywords

regimes, PLIC-VoF method, SIMPLE algorithm, numerical simulation, free surface, режим, filling, reservoir, viscous fluid, метод PLIC VoF, алгоритм SIMPLE, численное моделирование, свободная поверхность, вязкая жидкость, ёмкость, заполнение

Authors

NameOrganizationE-mail
Borzenko Evgeniy I.Tomsk State Universityborzenko@ftf.tsu.ru
Hegaj Efim I.Tomsk State Universityefim_h@ftf.tsu.ru
Всего: 2

References

Cruickshank J.O., Munson B.R. Viscous fluid buckling of plane and axisymmetric jets // J. Fluid Mech. 1981. V. 113. P. 221-239. DOI: 10.1017/S0022112081003467.
Cruickshank J.O. Low-Reynolds-number instabilities in stagnating jet flows // J. Fluid Mech. 1988. V. 193. P. 111-127. DOI: 10.1017/S0022112088002071.
Борзенко Е.И., Фролов О.Ю., Шрагер Г.Р. Фонтанирующее течение вязкой жидкости при заполнении канала с учетом диссипативного разогрева // Механика жидкости и газа. 2014. Т. 49(1). С. 45-55 DOI: 10.7868/S0040357114060013.
Пономарева М. А., Шрагер Г. Р., Якутенок В. А. Устойчивость плоской струи высоковязкой жидкости, натекающей на горизонтальную твердую плоскость // Механика жидкости и газа. Т. 46(1). 2011. С. 53-61.
Ribereau D., Le Breton P., Ballereau S. Casting Process Effect on Composite Solid Propellant Burning Rate // AIAA 2001-3946. 2001. DOI: 10.2514/6.2001-3946.
Hasegawa H., Fukunaga M., Kitagawa K., Shimada T. Burning rate anomaly of composite propellant grains // Combustion, Explosion, and Shock Waves. 2013. V. 49. P. 583-592 DOI: 10.1134/S0010508213050109.
Le Breton P., Ribereau D. Casting Process Impact on Small-Scale Solid Rocket Motor Ballistic Performance // J. Propulsion and Power. 2002. V. 18. P. 1211-1217. DOI: 10.2514/2.6055.
Ponomareva M.A., Yakutenok V.A. Simulation of mold filling by a highly viscous fluid using the 2D indirect boundary element method // Boundary Elements and Other Mesh Reduction Methods XXXVIII. 2015. V. 61. P. 285-296. DOI:10.2495/BEM380231.
Toru Shimada, Kazushige Kato, Nobuhiro Sekino, Nobuyuki Tsuboi, Yoshio Seike, Mihoko Fukunaga, Yu Daimon, Hiroshi Hasegawa, Hiroya Asakawa. Advanced Computer Science on Internal Ballistics of Solid Rocket Motors // Trans. JSASS Aerospace Tech. Japan. 2010. V. 8. P. 29-37. DOI: 10.2322/tastj.8.Pa_29.
Пономарева М. А. Моделирование медленных течений вязкой жидкости со свободной поверхностью / Дис. канд. физ.-мат. наук: 01.02.05 - Механика жидкости, газа и плазмы, 2011. 159 с.
Yin X., Zaricos I., Karadimitriou N.K., Raoof A., Hassanizadeh S.M. Direct simulations of two-phase flow experiments of different geometry complexities using Volume-of-Fluid (VOF) method // Chemical Engineering Science. 2018. V. 195. P. 820-827. DOI 10.1016/j.ces.2018.10.029.
Mohsen Karimi, Hermes Droghetti, Daniele L. Marchisio. Multiscale modeling of expanding polyurethane foams via computational fluid dynamics and population balance equation // Macromol. Symp. 2016. V. 360. P. 108-122. DOI 10.1002/masy.201500108.
Jang W., Jilesen J., Lien F.S., Ji Н. A study on the extension of a VOF/PLIC based method to a curvilinear coordinate system // Int. J. Computational Fluid Dynamics. 2008. V. 22(4). P. 241-257. DOI: 10.1080/10618560701880953.
Alibek Issakhov, Yeldos Zhandaulet, Aida Nogaeva. Numerical simulation of dam break flow for various forms of the obstacle by VOF method // International Journal of Multiphase Flow. 2018. V. 109. P. 191-206. DOI 10.1016/j.ijmultiphaseflow.2018.08.003.
Hargreaves D.M., Morvan H.P., Wright N.G. Validation of the volume of fluid method for free surface calculation: The broad-crested weir // Engineering Applications of Computational Fluid Mechanics. 2007. V. 1(2). P. 136-146. DOI: 10.1080/19942060.2007.11015188.
Susann Hansch, Dirk Lucas, Thomas Hohne, Eckhard Krepper, Gustavo Montoya. Comparative simulations of free surface flows using vof-methods and a new approach for multi-scale interfacial structures // Proceedings of the ASME 2013 Fluids Engineering Summer Meeting (FEDSM2013-16104). 2013 DOI: 10.1115/FEDSM2013-16104.
Shaswat Saincher, Jyotirmay Banerjee. A redistribution-based volume preserving PLIC-VOF technique // Numerical Heat Transfer. 2014. V. 67. P. 338-362. DOI: 10.1080/ 10407790.2014.950078.
Nichols B.D., Hirt C.W., Hotchkiss R.S. SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries. Los Alamos Scientific Laboratory Report: LA-8355, 1980. 121 p.
Richard J. McSherry, Ken V. Chua, Thorsten Stoesser. Large eddy simulation of free-surface flows // J. Hydrodynamics. 2017. V. 29(1). P. 1-12. DOI 10.1016/S1001-6058(16)60712-6.
Ruben Scardovelli and Stephane Zaleski. Direct numerical simulation of free-surface and interfacial flow // Annu. Rev. Fluid Mech. 1999. V. 31. P. 567-603. DOI 10.1146/annurev. fluid.31.1.567.
 Numerical investigation of the reservoir filling with a newtonian fluid using the VoF-method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/6

Numerical investigation of the reservoir filling with a newtonian fluid using the VoF-method | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 60. DOI: 10.17223/19988621/60/6

Download full-text version
Counter downloads: 526