Commutative feebly invo-clean group rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/1

Commutative feebly invo-clean group rings

A commutative ring R is called feebly invo-clean if any its element is of the form v+e-f, where v is an involution and e, f are idempotents. For every commutative unital ring R and every abelian group G we find a necessary and sufficient condition only in terms of R , G and their sections when the group ring R[G] is feebly invo-clean. Our result improves two recent own achievements about commutative invo-clean and weakly invo-clean group rings, published in Univ. J. Math. & Math. Sci. (2018) and Ural Math. J. (2019), respectively.

Download file
Counter downloads: 172

Keywords

invo-clean rings, weakly invo-clean rings, feebly invo-clean rings, group rings, инво-чистые кольца, слабо инво-чистые кольца, мало инво-чистые кольца, групповые кольца

Authors

NameOrganizationE-mail
Danchev Peter V.Institute of Mathematics and Informatics of Bulgarian Academy of Sciencespvdanchev@yahoo.com. danchev@math.bas.bg
Всего: 1

References

Danchev P.V. (2017) Invo-clean unital rings. Commun. Korean Math. Soc. 32(1). pp. 19-27.
Danchev P.V. (2017) Weakly invo-clean unital rings. Afr. Mat. 28(7-8). pp. 1285-1295.
Danchev P.V. (2017) Feebly invo-clean unital rings. Ann. Univ. Sci. Budapest (Math.) 60. pp. 85-91.
Danchev P.V. (2017) Weakly semi-boolean unital rings. JP J. Algebra, Numb. Th. & Appl. 39(3). pp. 261-276.
Danchev P.V. (2018) Commutative invo-clean group rings. Univ. J. Math. & Math. Sci. 11(1). pp. 1-6.
Danchev P.V. (2019) Commutative weakly invo-clean group rings. Ural Math. J. 5(1). pp. 48-52.
P.V. Danchev and W.Wm. McGovern (2015) Commutative weakly nil clean unital rings. J. Algebra. 425(5). pp. 410-422.
Karpilovsky G. (1982) The Jacobson radical of commutative group rings. Arch. Math. 39. pp. 428-430.
Milies C.P. and Sehgal S.K. (2002) An Introduction to Group Rings. Vol. 1. Springer Science and Business Media.
Passman D. (2011) The Algebraic Structure of Group Rings. Dover Publications. Received: June 4, 2019
 Commutative feebly invo-clean group rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/1

Commutative feebly invo-clean group rings | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/1

Download full-text version
Counter downloads: 558