Regional gradient compensation with minimum energy
In this paper we interest to the regional gradient remediability or compensation problem with minimum energy. That is, when a system is subjected to disturbances, then one of the objectives becomes to find the optimal control which compensates regionally the effect of the disturbances of the system, with respect to the regional gradient observation. Therefore, we show how to find the optimal control ensuring the effect compensation of any known or unknown disturbance distributed only on a subregion of the geometrical evolution domain, with respect to the observation of the gradient on any given subregion of the evolution domain and this in finite time. Under convenient hypothesis, the minimum energy problem is studied using an extension of the Hilbert Uniqueness Method (HUM). Approximations, numerical simulations, appropriate algorithm, and illustrative examples are also presented.
Keywords
gradient,
optimal control,
regional remediability,
disturbance,
efficient actuators,
градиент,
оптимальное управление,
локальная восстановимость,
возмущение,
эффективные актюаторыAuthors
Rekkab Soraya | Mentouri University | rekkabsoraya@gmail.com |
Aichaoui Houda | Mentouri University | aichaoui_houda@hotmail.fr |
Benhadid Samir | Mentouri University | ihebmaths@yahoo.fr |
Всего: 3
References
Amouroux M., El Jai A., Zerrik E. (1994) Regional observability of distributed systems. International Journal of Systems Science. 25. pp. 301-313.
Boutoulout A., Bourray H., El Alaoui F.Z., Benhadid S. (2014) Regional observability for distributed semi-linear hyperbolic systems. International Journal of Systems Science. 87. pp. 898-910.
El Jai A., Simon M.C., Zerrik E. (1993) Regional observability and sensor structures. Sensors and Actuators Journal. 39. pp. 95-102.
El Jai A., Simon M.C., Zerrik E., Pritchard A.J. (1995) Regional controllability of distributed systems. International Journal of Control. 62. pp. 1351-1365.
Zerrik E., Bourray H., Benhadid S. (2007) Sensors and regional observability of the wave equation. Sensors and Actuators Journal. 138. pp. 313-328.
Al-Saphory R.A., Al-Jawari N., Al-Qaisi I. (2010) Regional gradient detectability for infinite dimensional systems. Tikrit Journal of Pure Science. 15. pp. 1813-1662.
Benhadid S., Rekkab S., Zerrik E. (2012) Sensors and regional gradient observability of hyperbolic systems. International Control and Automation. 3. pp. 78-89.
Benhadid S., Rekkab S., Zerrik E. (2013) Sensors and boundary gradient observability of hyperbolic systems. International Journal of Management & Information Technology. 4(3). pp. 295-316.
Zerrik E., Boutoulout A., Kamal A. (1999) Regional gradient controllability of parabolic systems. International Journal of Applied Mathematics and Computer Science. 9. pp. 101-121.
Zerrik E., Bourray H. (2003) Regional gradient observability for parabolic systems. International Journal of Applied Mathematics and Computer Science. 13. pp. 139-150.
Rekkab S. (2017) Regionally gradient efficient actuators and sensors. International Journal of New Research and Technology. 3. pp. 143-152.
Rekkab S., Benhadid S. (2017) Gradient remediability in linear distributed parabolic systems analysis, approximations and simulations. Journal of Fundamental and Applied Sciences. 9. pp. 1535-1558.
Lions J.L. (1971) Optimal control systems governed by partial differential equations. New York: Springer-Verlag.