Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/8

Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables

Designing of the structures made of polymeric and composite viscoelastic materials requires development of the efficient and cost-effective methods for calculating stress-strain state. This paper proposes an iterative algorithm for solving such problems. The advantages of the algorithm over existing methods are the following: firstly, there is a possibility to parallelize the calculations of spatial and time components of the stress-strain state; secondly, this algorithm eliminates the need to integrate the history of stress and displacement variation in time. Moreover, the formulated iterative algorithm allows one to obtain the parameters of the stress-strain state of a viscoelastic solid without using integral operator inverse to the relaxation operator. The proposed method involves the following concept. The integral operators of the shear and volume relaxation are replaced by some values of the elastic shear and volume moduli. The identity of the obtained elastic problem with initially stated viscoelastic problem is ensured by supplementing right-hand sides of the equilibrium equations and boundary conditions with the corresponding residuals. In addition, each residual involves the result of viscoelastic operator effect on the required parameters, and, therefore, it cannot be found directly. The numerical implementation assumes the iteration process to be built, in which the residuals on the current step are calculated using the solutions obtained on the previous one. The paper describes the formulated iterative algorithm, as well as its application in conjunction with commercial or free computer software employed for a finite element analysis. The paper also includes an example of the model problem solution.

Download file
Counter downloads: 216

Keywords

линейная вязкоупругость, интегральные операторы, вспомогательные определяющие уравнения, сходимость, итерационный алгоритм, linear viscoelasticity, integral operators, auxiliary constitutive equations, convergence, iterative algorithm

Authors

NameOrganizationE-mail
Pavlov Mikhail S.Tomsk Polytechnic Universitymspavlov@tpu.ru
Svetashkov Aleksandr A.Tomsk Polytechnic Universitysvetashkov@tpu.ru
Kupriyanov Nikolay A.Tomsk Polytechnic Universitykupriyanov@tpu.ru
Всего: 3

References

Lakes R. Viscoelastic Materials N.Y.: Cambridge University Press, 2009. 461 p. DOI: 10.1017/CBO9780511626722
Pavlov M. et. al. Mathematical model of composite fibre-glass aramide-wired cord rheological properties // 13th International Conference of Students and Young Scientists on Prospect of Fundamental Sciences Development, PFSD 2016, Tomsk, Russian Federation, 26-29 April 2016. AIP Conference Proceeding. American Institute of Physics, 2016. V. 1772. 6 p. DOI: 10.1063/1.4964582.
Doubal S., Doubal J. Theory of Viscoelasticity Handbook. Delter, 2014. 81 p.
Ржаницын А.Р. Теория ползучести. М.: Издательство литературы по строительству, 1968. 418 с.
Maxwell J.Cl. On the Dynamical Theory of Gases // Philosophical Transactions. 1867. V. 157. P. 49-88. DOI: 10.1098/rstl.1867.0004.
Boltzman L. Zur Theorie der Elastischen Nachwirkung // Wiener Berichte. 1874. V. 70. P. 275-306. DOI: 10.1002/andp.18782411107
Volterra V. Lecons sur les fonctions de lignes. Paris: Gautierr Villars, 1912. 230 p.
Volterra V. Theory of Functionals and of Integral and integrodifferential Equations. London; Glasgow: Blackie & Son Limited, 1930. 226 p.
Адамов А.А. и др. Методы прикладной вязкоупругости. Екатеринбург: УрО РАН, 2003. 411 с.
Ильюшин А.А., Победря Б.Е. Основы математической теории термо-вязкоупругости. М.: Наука, 1970. 280 с.
Reddy J.N. An Introduction to Continuum Mechanics. N.Y.: Cambridge University Press, 2008. 449 p. DOI: 10.1017/CBO9781139178952.
Pipkin A.C. Lectures of Viscoelasticity Theory. N.Y.: Springer Verlag, 1986. 181 p. DOI: 10.1007/978-1-4612-1078-8.
Flugge W. Viscoelasticity. N.Y.: Blaisdell Press, 1967. 187 p.
Cristensen R.M. Theory of Viscoelasticity: An Introduction. N.Y.: Academic, 1980. 364 p.
Колтунов М.А., Майборода В.П. , Зубчанинов В.Г. Прочностные расчеты изделий из полимерных материалов. М.: Высшая школа, 1983. 239 с.
Schapery R.A. On the characterization of nonlinear viscoelastic materials // Polymer Engineering and Science. 1969. V. 9. No. 4. P. 295-310. DOI: 10.1002/pen.760090410.
Tang Y., Li T., Ma X. Creep and recovery behavior analysis of space mesh structures // Acta Astronautica. 2016. No. 128. P. 455-463. DOI: 10.1016/j.actaastro.2016.08.003.
Kwok K., Pellegrino S. Micromechanics Models for Viscoelastic Plain-Weave Composite Tape Springs // AIAA Journal. 2017. V. 55. No 1. P. 309-321. DOI: 10.2514/1.J055041.
Taylor R.L., Pister K.S., Goudreas G.L. Thermochemical analysis of viscoelastic solids // Int. J. for Numerical Methods in Engineering. 1970. V. 2. P. 45-59. DOI: 10.1002/nme.1620020106.
Simo J.C. On fully three-dimensional finite strain viscoelastic damage model: Formulation and computational aspects // Computer. Methods In Applied Mechanics and Engineering. 1987. V. 60. Iss. 2. P. 153-173. DOI: 10.1016/0045-7825(87)90107-1.
Schapery R.A. Analysis of viscoelastic composite materials // J. Composite Materials. 1967. V. 1. Iss. 3. P. 228-267. DOI: 10.1177/002199836700100302.
Малый В.И., Труфанов Н.А. Метод квазиконстантных операторов в теории вязкоупругости анизотропных нестареющих материалов // Известия Академии Наук СССР. Механика твердого тела. 1987. № 6. С. 148-154.
Haj-Ali R., Muliana A. Numerical finite element formulation of the schapery non-linear viscoelastic material model // Int. J. for Numerical Methods in Engineering. 2004. No. 59. P. 25-45. DOI: 10.1002/nme.861.
Tsukrov I. et al. Numerical modeling of nonlinear elastic components of mooring systems // IEEE J. Oceanic Engineering. 2005. V. 30. No. 1. P. 37-46. DOI: 10.1109/JOE.2004. 841396.
Куликов Р.Г., Труфанов Н.А. Итерационный метод решения квазистатических нелинейных задач вязкоупругости // Вычислительная механика сплошных сред. 2009. Т. 2. № 3. С. 44-56.
Барба С.П. Метод упругих решений в задаче о неустановившейся ползучести // Ученые записки ЦАГИ. 1990. Т. XXI. № 5. С. 112-123.
Павлов С.М., Светашков А.А. Итерационный метод решения задач линейной вязкоупругости // Изв. вузов. Физика. 1993. Т. 36. № 4. С. 129-136. DOI: 10.1007/BF00570749.
Svetashkov A., Kupriyanov N., Manabaev K. Modification of the iterative method for solving linear viscoelasticity boundary value problems and its implementation by finite element method // Acta Mechanica. 2018. V. 229. Iss. 6. P. 2539-2559. DOI: 10.1007/s00707-018-2129-z.
Светашков А.А. Прикладные задачи механикивязкоупругих материалов: монография / Томский политехнический университет. Томск: Изд-во Томского политехнического университета, 2012. 205 с.
Победря Б.Е. Численные методы в теории упругости и пластичности. М.: Изд-во МГУ, 1995. 366 с.
Работнов Ю.Н. Элементы наследственной механики твердых тел. М.: Наука, 1977. 384 с.
 Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/8

Modified formulation of the iterative algorithm for solving linear viscoelasticity problems based on separation of time and spice variables | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/8

Download full-text version
Counter downloads: 558