Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/9

Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow

A mathematical model of vibrations of horizontal viscoelastic pipelines conveying two-phase medium in a slug flow taking into account the internal pressure is proposed in the paper. In the study on vibrations of the pipeline conveying gas-containing fluid, a viscoelastic model of the theory of beams is used. The hereditary Boltzmann-Volterra theory of viscoelasticity with weakly singular hereditary kernels is used to describe the viscoelastic properties of the pipeline material. By means of the Bubnov-Galerkin method, the equations of the pipeline motion are reduced to the study of a system of ordinary integro-differential equations (IDE) with variable coefficients relative to a time function. The solution to the IDE is obtained numerically using the quadrature formulas. The effect of both gas and fluid phase flow rates, tensile forces in a longitudinal direction of the pipeline, internal pressure parameters, singularity parameters in the hereditary kernels on the vibrations of the pipeline made of composite material are studied numerically. It is found that the critical velocity of the gas flow decreases with an increase in the pressure inside the pipeline.

Download file
Counter downloads: 256

Keywords

математическая модель, вычислительный алгоритм, вязкоупругость, трубопровод, двухфазное течение, критическая скорость, mathematical model, computational algorithm, viscoelasticity, pipeline, two-phase flow, critical velocity

Authors

NameOrganizationE-mail
Khudayarov Bakhtiyar A.Tashkent Institute of Irrigation and Agricultural Mechanization Engineersbakht-flpo@yandex.ru
Komilova Kholidakhon M.Tashkent Institute of Irrigation and Agricultural Mechanization Engineerskomilova591@mail.ru
Всего: 2

References

Xiao-Ye Mao, H Ding, Li-Qun Chen. Steady-state response of a fluid-conveying pipe with 3:1 internal resonance in supercritical regime // Nonlinear Dynamics. 2016. V. 86(2). P. 795-80. DOI: 10.1007/s11071-016-2924-9.
Paidoussis M.P., Li G.X. Pipes conveying fluid: a model dynamical problem // J. Fluid. Struct. 1993. V. 7. P. 137-204.
Bezborodov S.A., Ulanov A.M. Calculation of vibration of pipeline bundle with damping support made of MR material // Procedia Engineering. 2017. V. 176. P. 169-174. https://doi.org/10.1016/j.proeng.2017.02.285.
Kaiming Bi, Hong Hao. Numerical simulation on the effectiveness of using viscoelastic materials to mitigate seismic induced vibrations of above-ground pipelines // Engineering Structures. 2016. V. 123. P. 1-14. DOI: 10.1016/j.engstruct.2016.05.022.
Hu Ding, Jinchen Ji, Li-Qun Chen. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics // Mechanical Systems and Signal Processing. 2019. V. 121. P. 675-688. DOI: 10.1016/j.ymssp.2018.11.057.
Khudayarov B.A., Turaev F.Zh. Mathematical Simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid // Applied Mathematical Modelling. 2019. V. 66. P. 662-679. https://doi.org/10.1016/j.apm.2018.10.008.
Zahid I. Al-Hashimy, Hussain H. Al-Kayiem and Rune W. Time. Experimental investigation on the vibration induced by slug flow in horizontal pipe // ARPN Journal of Engineering and Applied Sciences. 2016. Vol. 11(20).
Belen'kij M.Ya., Gotovskij M.A., Fokin B.S. Vibration elimination in pipe-lines for transport of two-phase and boiling flows // Teploehnergetika. 1996. No. 3. P. 41-46.
Ahmed M. Nagib Elmekawy, Mohamed A. Shabara, Hassan Elgamal and Bassuny El-Souhily. Numerical analysis of the prediction of the two-phase flow rate by measuring vibration of pipelines // ASME 2017 International Mechanical Engineering Congress and Exposition. Paper No. IMECE2017-71038. P. V04AT05A039. DOI: 10.1115/IMECE2017-71038.
Wan Yi, Zhao Jianhua, Zhang Ling. Mathematical modeling of coupled vibration of curved pipes conveying stratified two-phase flow // Chinese Journal of Applied Mechanics. 2015. V. 32.
Ягубов Э.З., Цхадая Н.Д., Ягубов З.Х. Многоканалные трубопроводы для транспортировки нефтегазовых сред и восстановление изношенных нефтегазопроводов // Научные трудах. 2013. № 1. С. 57-63.
Jinzhe Gong, Aaron Zecchin, Martin Lambert, Angus Simpson. Study on the frequency response function of viscoelastic pipelines using a multi-element Kevin-Voigt model // Procedia Engineering. 2015. 119. P. 226-234. DOI: 10.1016/j.proeng.2015.08.880.
Hao T.Y. Establishment of mathematical model of buried pipeline on nonlinear soil dynamic model // Advanced Materials Research. 2012. V. 452-453. P. 334-338. https://doi.org/ 10.4028/www.scientific.net/AMR.452-453.334.
Бадалов Ф.Б., Худаяров Б.А., Абдукаримов А. Исследование влияния ядра наследственности на решение линейных и нелинейных динамических задач наследственнодеформируемых систем // Проблемы машиностроения и надежности машин. Российская академия наук. 2007. № 4. С. 107-110. https://doi.org/10.3103/S1052618807040048.
Koltunov M.A. Creep and Relaxation. Moscow: Higher School. 1976.
Dai H., Wang L., Ni Q. Dynamics of a fluid-conveying pipe composed of two different materials // Int. J. Eng. Sci. 2013. V. 73. P. 67-76. DOI: 10.1016/j.ijengsci.2013.08.008.
Monette C., Pettigrew M.J. Fluid elastic instability of flexible tubes subjected to two-phase internal flow // J. Fluids Struct. 2004. V. 19. P. 943-956. DOI: 10.1016/j.jfluidstructs. 2004.06.003
Бадалов Ф.Б. Методы решения интегральных и интегродифференциальных уравнений наследственной теории вязкоупругости. Ташкент: Мехнат, 1987. 269 с.
Badalov F.B., Eshmatov Kh. Yusupov M. Some methods of solution of systems of integrodifferential equations encountered in problems of viscoelasticity // Applied Mathematics and Mechanics. 1987. 51. P. 867-871.
Khudayarov B.A. Flutter of a viscoelastic plate in a supersonic gas flow // International Applied Mechanics. 2010. V.46(4). P. 455-460. https://doi.org/10.1007/s10778-010-0328-y.
Khudayarov B.A. Numerical Analysis of the nonlinear oscillation of viscoelastic plates // International Applied Mechanics. 2005. V. 41. P. 538-542. https://doi.org/10.1007/s10778-005-0121-5.
Khudayarov B.A., Bandurin N.G. Numerical investigation of nonlinear vibrations of viscoelastic plates and cylindrical panels in a gas flow // Journal of Applied Mechanics and Technical Physics. 2007. V. 48. P. 279-284. https://doi.org/10.1007/s10808-007-0036-5.
Худаяров Б.А., Тураев Ф.Ж. Численное моделирование нелинейных колебаний вязкоупругого трубопровода с жидкостью // Вестник Томского государственного университета. Математика и механика. 2016. № 5(43). С. 90-98. DOI: 10.17223/19988621/43/10.
 Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/9

Numerical modeling of vibrations of viscoelastic pipelines conveying two-phase slug flow | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 61. DOI: 10.17223/19988621/61/9

Download full-text version
Counter downloads: 558