Method for calculation of the stress-strain state for cable-membrane space reflector structures | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/1

Method for calculation of the stress-strain state for cable-membrane space reflector structures

Cable-membrane space reflectors are widely used in the modern space industry. They are essential for communication, monitoring, and observation of the Earth and space objects. Experiments with actual reflector structures are quite expensive. Thus, effective calculation techniques should be applied to describe the reflector behavior under operative loads. A specific feature of such structures is its geometrical non-linear behavior, i.e., significant displacements of the elements under loads. Therefore, geometrical nonlinear governing equations of elasticity theory should be applied in describing the mathematical model of the reflector. The exact solution of these equations could be found only in the simplest cases. Thus, numerical methods for such equations should be used. This paper presents a two-stage calculation method of the stress-strain state for reflector structures based on force density and finite-element methods. The first stage embraces the calculation of the cable element shapes for reflector frontal (rear) nets by the nonlinear force density method. It has been proved that, in some cases, calculating the force density vector iteration step could be challenging due to the ill-conditioned matrix being a component part of this vector. To exclude this problem, the Moore-Penrose pseudoinverse matrix was applied. In the second stage, the calculated reflector frontal (rear) net shapes and corresponding values of cable tension were used as an initial estimate in determining the reflector node displacement field via the nonlinear finite-element method. The reflector stress-strain state is determined using a solution sequence in which every next solution involves the previous one as an initial estimation.

Download file
Counter downloads: 149

Keywords

метод плотности сил, метод конечных элементов, геометрическая нелинейность, сетчатый рефлектор, псевдообратная матрица, нормальное псевдорешение, force density method, finite-element method, geometrical nonlinearity, grid reflector, pseudoinverse matrix, normal pseudosoloution

Authors

NameOrganizationE-mail
Belkov Aleksey V.Tomsk State Universitybelkov@niipmm.tsu.ru
Belov Sergey V.Tomsk State Universitybelovsv@niipmm.tsu.ru
Zhukov Andrey P.Tomsk State Universityzh@niipmm.tsu.ru
Pavlov Mikhail S.Tomsk State Universitymcpavlov@niipmm.tsu.ru
Ponomarev Sergey V.Tomsk State Universitypsv@niipmm.tsu.ru
Kuznetsov Stanislav A.JSC Academian M.F. Reshetnev Information Satellite Systemsksa@iss-reshetnev.ru
Всего: 6

References

Lewis W. J. Tension structures. Form and behavior. Thomas Telford, 2003. 201 p.
Работнов Ю. Н. Механика деформируемого твердого тела: учеб. пособие. М.: Наука, 1979. 744 с.
Zienkiewicz O. C The finite element method for solid and structural mechanics. Butterworth-Heinemann, 2013. 714 p.
Ponomarev S.V., Zhukov A. P., Belkov A. V., Ponomarev V. S., Belov S. V., Pavlov M. S. Stress-strain state simulation of large-sized cable-stayed shell structures // IOP Conf. Series: Materials Science and Engineering. 2015. V. 71. No. 012070. DOI: 10.1088/1757-899X/71/1/012070.
Белов С. В. , Бельков А. В., Жуков А. П., Павлов М. С. , Пономарев В. С. , Пономарев С. В., Величко А. И., Халиманович В. И. Оценка напряженно-деформированного состояния силового каркаса крупногабаритного раскрываемого космического рефлектора // Изв. вузов. Физика. 2013. Т. 56. № 7-3. С. 131-133.
Schek H.J. The force density method for form finding and computation of general networks // Computer Methods in Applied Mechanics and Engineering. 1974. № 3. P. 115-134.
Malerba P. G, Quagliaroli M. Flexible bridge decks suspended by cable nets. A constrained form finding approach // Int. J. Solids and Structures. 2013. V. 50. P. 2340-2352.
Morterolle S., Maurin B., Quirant J., Dupuy C. Numerical form-finding of geotensoid tension truss for mesh reflector // Acta Astronautica. 2012. V. 76. P. 154-163.
Yang G., Baoyan D., Zhang Y., Yang D. Uniform-tension form-finding design for asymmetric cable-mesh deployable reflector antennas. // Advances in Mechanical Engineering. 2016. V. 8 (10). P. 1-7. DOI: 10.1177/1687814016672367.
Tibert A.G. Deployable Tensegrity Structures for Space Applications [Electronic resource]: Doctoral Thesis. URL: http://www-civ.eng.cam.ac.uk/dsl/publications/TibertDocThesis.pdf
Жуков А.П. Динамика отражающей поверхности крупногабаритного зонтичного рефлектора космического аппарата: дис. канд. физ.-мат. наук: 01.02.04 - Механика деформируемого твердого тела, 2016. 156 с.
Бельков А.В., Белов С.В., Жуков А.П., Павлов М.С., Пономарев С.В. Расчет формообразующей структуры зонтичного сетчатого рефлектора // Решетневские чтения: материалы XXI Международной научно-практической конференции, посвященной памяти генерального конструктора ракетно-космических систем академика М.Ф. Решетнева (Красноярск, 08-11 ноября 2017 г). С. 82-83.
Вержбицкий В.М. Вычислительная линейная алгебра: учеб. пособие для вузов. М.: Высш. шк., 2009. 351 с.
Бухтяк М.С., Никульчиков А.В. Оценка среднеквадратичного отклонения поверхности параболического рефлектора от шестиугольной фронтальной сети // Вестник Томского государственного университета. Математика и механика. 2012. № 4(20). С.5-14
 Method for calculation of the stress-strain state for cable-membrane space reflector structures | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/1

Method for calculation of the stress-strain state for cable-membrane space reflector structures | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/1

Download full-text version
Counter downloads: 508