Left-invariant para-Sasakian structures on Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/3

Left-invariant para-Sasakian structures on Lie groups

Paracontact structures on manifolds are currently being studied quite actively; there are several different approaches to the definition of the concepts of paracontact and para-Sasakian structures. In this paper, the paracontact structure on a contact manifold (M2n+1, η) is determined by an affinor φ which has the property φ2 = I - η0ξ, where ξ is the Reeb field and I is the identity automorphism. In addition, it is assumed that dη(φX, φY) = - dη(X,Y). This allows us to define a pseudo-Riemannian metric by the equality g(X,Y) = dη(φX,Y) + η(X)η(Y). In this paper, Sasaki paracontact structures are determined in the same way as conventional Sasaki structures in the case of contact structures. A paracontact metric structure (η, ξ, φ, g) on M2n+1 is called para-Sasakian if the almost para-complex structure J on M2n+1×R defined by the formula J(X, f∂t) = (φX - fξ, -η(X)∂t), is integrable. In this paper, we obtain tensors whose vanishing means that the manifold is para-Sasakian. In the case of Lie groups, it is shown that left-invariant para-Sasakian structures can be obtained as central extensions of para-Kahler Lie groups. In this case, the relations between the curvature of the para-Kahler Lie group and the curvature of the corresponding para-Sasakian Lie group are found. AMS Mathematical Subject Classification: 53C15, 53D10, 53C25, 53C50

Download file
Counter downloads: 126

Keywords

пара-комплексная структура, пара-кэлерова структура, para-complex structures, para-Sasakian structures, para-Sasakian manifold, paraKahler structures, left-invariant paracontact structures, пара-сасакиевы многообразия, левоинвариантная параконтактная структура

Authors

NameOrganizationE-mail
Smolentsev Nikolay K.Kemerovo State Universitysmolennk@yandex.ru
Всего: 1

References

Bejan C.L., Eken S., Kιlις E. Legendre Curves on Generalized Paracontact Metric Manifolds // Bull. Malays. Math. Sci. Soc. 2019. V. 42. P. 185-199. DOI 10.1007/s40840-017-0475-y.
Prakasha D.G., Veeresha P. Para-Sasakian manifolds and *-Ricci solitons // Afrika Matematika. V. 30. Iss. 7-8. P. 989-998. DOI: https://doi.org/10.1007/s13370-019-00698-9.
De U.C., Han Y., Mandal K. On Para-Sasakian Manifolds Satisfying Certain Curvature Conditions // Filomat. 2017. V. 31. No. 7. P. 1941-1947. DOI 10.2298/FIL1707941D.
Alekseevsky D. V., Cortes V., Galaev A. and Leistner T. Cones over pseudo-Riemannian manifolds and their holonomy // J. Reine Angew. Math. 2009. V. 635. P. 23-69. DOI: https://doi.org/10.1515/CRELLE.2009.075.
Blair D.E. Contact Manifolds in Riemannian Geometry // Lecture Notes in Mathematics. Berlin; Heidelberg; New York: Springer-Verlag, 1976.
Алексеевский Д.В., Медори К., Томассини А. Однородные пара-кэлеровы многообразия Эйнштейна // Успехи математических наук. 2009. Т. 64. Вып. 1(385). C. 3-50. https://doi.org/10.4213/rm9262.
Smolentsev N.K. Left-invariant almost para-complex structures on six-dimensional nilpotent Lie groups // Cornell University Library: arXiv:l80l.0799lv2 math.DG. 15 p.
Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. and its Appl. 2008. V. 26. Iss. 5. P. 544-552. DOI: https://doi.org/10.1016/j.difgeo.2008.04.001.
Go,e M., Khakimdjanov Y., Medina A. Symplectic or contact structures on Lie groups. Differential Geom. Appl. 2004. V. 21. No. 1. P. 41-54. DOI: 10,1016 /j.difgeo.2003.12.006.
Smolentsev N.K. Invariant pseudo-Sasakian and K-contact structures on seven-dimensional nilpotent Lie groups // Science Evolution. 2017. V. 2. No. 1. P. 91-99.
Kobayashi S. and Nomi,u K. Foundations of Differential Geometry. Vol. 1 and 2. New York; London: Interscience Publ., 1963.
 Left-invariant para-Sasakian structures on Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/3

Left-invariant para-Sasakian structures on Lie groups | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/3

Download full-text version
Counter downloads: 508