Investigation of the stability of optimal aerodynamic designing of the three-dimensional wing-fuselage layout for a wide-body long-range aircraft with regard to its initial shape | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/7

Investigation of the stability of optimal aerodynamic designing of the three-dimensional wing-fuselage layout for a wide-body long-range aircraft with regard to its initial shape

In this paper, the results of investigation of the algorithm stability for optimal threedimensional designing of a wing-fuselage configuration for a wide-body long-range aircraft with regard to its initial shape are presented. The solution to the problem of determining the geometry, which has a minimum value of the total drag coefficient under given geometric and aerodynamic constraints of various types, is obtained using the algorithm based on the combination of the methods of highly accurate numerical solution to the Navier - Stokes equations and the methods of global search optimization with the use of distributed parallel technologies. The multipoint problem of optimal designing consists in the determination of the surface of a multi-sectional spatial wing of aircraft. In the aircraft plan, the wing shape is uniform. The optimal wing satisfies the following condition: the value of a weighted combination of drag coefficients for the wingfuselage layout is minimal at several points of engineering design. The geometric constraints on the wing are independent of the designing conditions and remain unchanged. The aerodynamic constraints on the wing are imposed for each optimization point separately. It was shown that the algorithm is resistant to the choice of the initial shape of the wing, since the optimal geometries obtained for two very different options for initial shape assignment are very close to each other and have almost identical integral aerodynamic characteristics in the cruise flight mode and also in a wide range of this mode.

Download file
Counter downloads: 152

Keywords

оптимальная геометрия, уравнения Навье - Стокса, момент тангажа, коэффициент сопротивления, устойчивость процесса оптимизации, optimal geometry, the Navier - Stokes equations, pitch moment, drag coefficient, stability of optimization

Authors

NameOrganizationE-mail
Bragin Nikolay N.Central Aerohydrodynamic Instituteorlov@ftf.tsu.ru
Orlov Sergey A.Tomsk State Universityorlov@ftf.tsu.ru
Peygin Sergey V.OPTIMENGA-777 Ltdmishpahat_peiguine@yahoo.com
Всего: 3

References

Peigin, S.V., Timchenko, S.V., Epstein, B.S. The Stability of the Optimal Aerodynamic Design of an Isolated Three-Dimensional Wing to Its Initial Form // Technical Physics. 2018. V. 63(12). P. 1736-1742
Пейгин С.В., Пущин Н.А., Болсуновский А.Л., Тимченко С.В. Оптимальное аэродинамическое проектирование крыла широкофюзеляжного дальнемагистрального самолета // Вестник Томского государственного университета. Математика и механика. 2018. № 51. С. 117- 129.
Epstein B., Peigin S., Bolsunovskiy A., Timchenko S.V. Aerodynamic shape optimization by automatic hybrid genetic tool OPTIMENGA AERO // Source of the Document 52nd AIAA Aerospace Sciences Meeting AIAA Science and Technology Forum and Exposition, SciTech 2014. DOI: 10.2514/6.2014-0569.
Epstein B, Averbuch A. and Yavneh I. An accurate ENO driven multigrid method applied to 3D turbulent transonic flows // Journal of Computational Physics. 2001. V. 168. P. 316-328. DOI: 10.1006/jcph.2001.6698.
Epstein B, Peigin S.V. Implementation of WENO (Weighted Essentially Non-oscillatory) Approach to Navier - Stokes Computations // International Journal of CFD. V. 18. No. 3. 2004. DOI: 10.1080/1061-8560310001621243.
Пейгин С.В., Periaux J., Тимченко С.В. Применение генетических алгоритмов для оптимизации формы тела по тепловому потоку // Математическое моделирование. 1998. Т. 10. № 9. C. 111-122.
Казаков В.Ю., Пейгин С.В., Тимченко С.В. Оптимизация траектории входа в атмосферу земли по интегральному тепловому потоку // ЖПМТФ. 2000. Т. 41. No. 4. P. 112-121.
Michalewicz Z. Genetic algorithms + data structures = evolution programs. New York: Springer-Verlag, 1992. Artificial Intelligence. DOI: 10.1007/978-3-662-02830-8.
Тимченко С.В. Параллельный генетический алгоритм для решения задач многокритериальной оптимизации // Ползуновский вестник. 2012. № 2/1. С. 103-107.
Орлов С.А., Пейгин С.В., Степанов К.А. Тимченко С.В. Эффективная реализация нелинейных ограничений при оптимизации трехмерных трансзвуковых крыльев // Вестник Томского государственного университета. Математика и механика. 2015. № 1. С. 72-81. DOI: 10.17223/19988621/33/7.
 Investigation of the stability of optimal aerodynamic designing of the three-dimensional wing-fuselage layout for a wide-body long-range aircraft with regard to its initial shape | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/7

Investigation of the stability of optimal aerodynamic designing of the three-dimensional wing-fuselage layout for a wide-body long-range aircraft with regard to its initial shape | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/7

Download full-text version
Counter downloads: 513