Strength assessment for water shut-off baffles in a fractured medium | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/8

Strength assessment for water shut-off baffles in a fractured medium

The paper proposes a mathematical model for estimating the strength of two-layered water shut-off baffle adjacent to a wellbore after pumping the cured synthetic resin into a fractured or fractured-porous water-saturated media. The mathematical model is based on the solution to the Lame problem of three-layered pipe, the solution to the problem of isotropic elastic half-space with a cavity, and the von Mises yield criterion for ideal-plastic body. For the outer layer of resinfractured rock barrier, the elastic moduli of equivalent homogeneous isotropic medium are calculated using the differential self-consistent method for needle-like inclusions. The proposed model allows one to account for both the stress relaxation in the rock to a hydrostatic stress state in geological times and the possible tectonic stresses in the rock. In a three-dimensional space of parameters “resin strength - Poisson's ratio for resin - bottomhole pressure after water shut-off in a well”, the strength and yield areas for inner and outer layers of two-layered water shut-off baffle are calculated using some fixed parameters. It is shown that in many cases involving the real elastic and strength properties of the cured synthetic resins, especially under stresses in the reservoir conditions, the water shut-off baffle will be destroyed in any production well operation. It is also proved that the water shut-off operation efficiency does not increase with an increase in the injected synthetic resin volume.

Download file
Counter downloads: 130

Keywords

водоизолирующий экран, трещиновато-пористая среда, дифференциальный метод самосогласования, идеально-пластическое тело, water shut-off baffle, fractured-porous medium, differential self-consistent method, ideal plastic body

Authors

NameOrganizationE-mail
Il'yasov Aydar M.Ufa State Aviation Technical Universityamilyasov67@gmail.com
Kireev Timur F.Ufa State Aviation Technical Universitykireevtf@mail.ru
Bulgakova Guzel T.Ufa State Aviation Technical Universitybulgakova.guzel@mail.ru
Всего: 3

References

Ершов А. П., Даммер А. Я., Куперштох А. Л. Неустойчивость «невязкого пальца» в регулярных моделях пористой среды // ПМТФ. 2001. Т. 42. № 2. C. 129-140.
Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука, 1977. 416 с.
Динник А. Н. О давлении горных пород и расчет крепи круглой шахты // Инж. работник. 1925. № 7. С. 1 -12.
Желтов Ю.П., Христианович С.А. О гидравлическом разрыве нефтеносного пласта // Изв. АН СССР. ОТН. 1955. № 5. С. 3-41.
Басниев К.С., Кочина И.Н., Максимов В.М. Подземная гидромеханика. М.: Недра, 1993. 416 с.
Котяхов Ф.И. Физика газовых и нефтяных коллекторов. М.: Недра, 1977. 287 с.
Malkowski P., Ostrowski L. The methodology for the young modulus derivation for rocks and its value // Proc. ISRM European Rock Mechanics Symposium - EUROCK 2017, 20-22 June, Ostrava. 2017. V. 191. P. 134-141.
Димитриенко Ю.И. Нелинейная механика сплошной среды. М.: Физматлит, 2009. 624 с.
Устинов К.Б. Об определении эффективных упругих характеристик двухфазных сред. Случай изолированных неоднородностей в форме эллипсоидов вращения // Успехи механики. 2003. № 2. С. 126-168.
Wu T.T. The effect of inclusion shape on the elastic moduli of a two-phase material // Int. J. Solids and Structures. 1966. V. 2. P. 1-8.
Ильясов А. М. Оценка прочности цементного кольца, примыкающего к стволу добывающей скважины // ПМТФ. 2017. Т. 58. № 1. C. 210-217. DOI: 10.15372/ PMTF20170120.
 Strength assessment for water shut-off baffles in a fractured medium | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/8

Strength assessment for water shut-off baffles in a fractured medium | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2019. № 62. DOI: 10.17223/19988621/62/8

Download full-text version
Counter downloads: 508