Evaluation of the stress and strain during transition layer formation between a particle and a matrix | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 63. DOI: 10.17223/19988621/63/6

Evaluation of the stress and strain during transition layer formation between a particle and a matrix

When manufacturing composites, a transition layer is formed between a particle and a matrix. The composition and width of the layer both depend on technological parameters of the process. Application of the appropriate model of transition layer formation makes it possible to study in dynamics the evolution of transition zone size and the properties of obtained materials depending on the synthesis conditions. In addition, a new phase formation and boundary movement are accompanied by diffusion resulting in the redistribution of concentrations. These processes cause diffusion (concentration) stresses due to a difference in the phases' properties and a difference in the diffusant mobility in the phases. The paper presents a model for estimating the stresses and strains during the transition layer formation between a spherical particle and a matrix. The model includes the problem of the reaction diffusion with the boundaries moving due to a new phase growth. In a quasi-steady-state approximation, the diffusion problem involves finding the concentration distribution in the regions of given sizes and the determining of the phase boundaries' position. The latter subproblem is solved numerically. It is followed by finding the concentration distribution. The problem of mechanical equilibrium is solved analytically. The resulting data depend on the position of the boundaries and distribution of the concentrations.

Download file
Counter downloads: 217

Keywords

переходный слой, новая фаза, композит, подвижная граница, напряжения, деформации, концентрация, transition layer, new phase, composite, moving boundary, stresses, strains, concentration

Authors

NameOrganizationE-mail
Anisimova Mariia A.Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciencesanisimova_mawa@mail.ru
Knyazeva Anna G.Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciencesanna-knyazeva@mail.ru
Всего: 2

References

Krykkova O.N., Knyazeva A.G., Pogrebenkov V.M., Kostikov K.S., and Sevostianov I. Effective thermal expansion coefficient of a sintered glass-eucryptite composite // J. Mater Sci. 2017. V. 52. P. 11314-11325. DOI: 10.1007/s10853-017-1298-9.
Knyazeva A.G., Krykkova O.N., Lkrie S.A., Solyaev Y.O., and Shavnev A.A. Intermediate layer formation between inclusion and matrix during synthesis of unidirectional fibrous composite // AIP Conference Proceedings. 2014. V. 1623. P. 263-266. DOI: 10.1063/1.4898932.
Wagner C.Z. Beitrag zur theorie des anlaufvorgangs // Phys. Chem. 1933. V. 21. P. 25-36.
Dybkov V.I. Solid state reaction kinetics. Kyiv: IPMS publications, 2013. 400 p.
Erde'lyi Z., Schmitz G. Reactive diffusion and stresses in spherical geometry // Acta Materialia. 2012. V. 60. P. 1807-1817. DOI: 10.1016/j.actamat.2011.12.006.
Rokssel M., Erde'lyi Z., Schmitz G. Reactive diffusion and stresses in nanowires or nanorods // Acta Materialia. 2017. V. 131. P. 315-322. DOI: 10.1016/j.actamat.2017.04.001.
Ковалев О.Б., Беляев В.В. Математическое моделирование металлохимических реакций в двухкомпонентной реагирующей дисперсной смеси // Физика горения и взрыва. 2013. Т. 49. № 5. С. 64-76.
Назаренко Н.Н., Князева А.Г. Механические напряжения в сферолитах в процессе растворения кальций-фосфатов в биологических жидкостях // Физическая мезомеханика. 2010. Т. 13. № 3. С. 95-99.
Князева А. Г. Введение в локально-равновесную термодинамику физико-химических превращений в деформируемых средах: монография. Томск: Изд-во Том. ун-та, 146 с.
Советова Ю.В., Сидоренко Ю.Н., Скрипняк В.А. Многоуровневый подход к определению эффективных свойств композита с учетом повреждаемости // Физическая мезомеханика. 2013. Т. 16. № 5. С. 59-65.
Советова Ю.В., Сидоренко Ю.Н., Скрипняк В.А. Многоуровневый подход к исследованию влияния объемного соотношения компонентов волокнистого однонаправленного углепластика на его механические характеристики // Вестник Томского государственного университета. Математика и механика. 2014. № 2(28). C. 77-89.
Некрасов Е.А., Смоляков В.К., Максимов Ю.М. Математическая модель горения системы титан углерод // Физика горения и взрыва. 1981. Т. 17. № 5. С. 39-46.
Лапшин О.В., Овчаренко В.Е. Математическая модель высокотемпературного синтеза интерметаллического соединения Ni3Al на стадии воспламенения // Физика горения и взрыва. 1996. Т. 32. № 2. С. 46-54.
 Evaluation of the stress and strain during transition layer formation between a particle and a matrix | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 63. DOI: 10.17223/19988621/63/6

Evaluation of the stress and strain during transition layer formation between a particle and a matrix | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 63. DOI: 10.17223/19988621/63/6

Download full-text version
Counter downloads: 352