A mathematical model for simulating the biogeochemical processes in a freshwater lake | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 65. DOI: 10.17223/19988621/65/4

A mathematical model for simulating the biogeochemical processes in a freshwater lake

The most significant chemical elements in a lake ecosystem are phosphorus and nitrogen because one of them is the limiting factor of primary production rate. The phosphorus content level in a freshwater lake is of substantive importance in prediction of phytoplankton blooms. In that regard, the problem of the development of integrative models aimed at numerical simulation of the biochemical processes of phosphorus and nitrogen limitation in am aquatic ecosystem is topical for the contemporary stage of the development of mathematical methods in problems of limnology. In this paper, a mathematical model for studying the environmental status of a freshwater lake is proposed. The model includes ten prognostic variables: nitrate, phosphate, ammonium, chlorophyll a, phytoplankton, zooplankton, small nitrate detritus, large nitrate detritus, small phosphate detritus, and large phosphate detritus. Calculations performed based on the model developed for Barguzin Bay of Lake Baikal showed that during last ten days of August: - increased chlorophyll a content in the pelagic zone of the lake is localized at depths of 1030 m; - zooplankton is concentrated in the upper 25 m layer, and its biomass grows faster in the open water area; - the decrease in nutrients is registered in the zones with high phyto- and zooplankton populations. The results obtained are in qualitative agreement with data from monitoring studies of the chemical composition of water in Lake Baikal in summer. Financial support. The reported study was funded by RFBR, project number 19-31-60003. AMS Mathematical Subject Classification: 93A30

Download file
Counter downloads: 167

Keywords

математическая модель, экосистема пресноводного озера, численный эксперимент, озеро Байкал, mathematical model, freshwater lake ecosystem, numerical experiment, Lake Baikal

Authors

NameOrganizationE-mail
Tsydenov Bair O.V.E. Zuev Institute of Atmospheric Optics of Siberian Branch of the Russian Academy of Science; Tomsk State Universitybtsydenov@gmail.com
Всего: 1

References

Weiss R.F., Carmack E.C., Koropalov V.M. Deep-water renewal and biological production in Lake Baikal // Nature. 1991. V. 349. P. 665-669. DOI: 10.1038/349665a0.
Watanabe Y., Drucker V.V. Phytoplankton blooms in Lake Baikal, with reference to the lake’s present state of eutrophication // Ancient lakes: their cultural and biological diversity / Kawanabe H., Goldman G.W., Roosevelt A.C. (eds). Kenobi Productions, Belgium. 1999. P. 217-225.
Goldman C.R., Elser J.J., Richards R.C., Reuter J.E., Priscu J.C., Levin A.L. Thermal stratification, nutrient dynamics, and phytoplankton productivity during the onset of spring phytoplankton growth in Lake Baikal, Russia // Hydrobiologia. 1996. V. 331. No. 1-3. P. 9-24. DOI: 10.1007/BF00025403.
Satoh Y., Katano T., Satoh T., Mitamura O., Anbutsu K., Nakano S.-I., Ueno H., Kihira M., Drucker V., Tanaka Y., Mimura, T. Watanabe Y., Sugiyama M. Nutrient limitation of the primary production of phytoplankton in Lake Baikal // Limnology. 2006. V. 7. No. 3. P. 225229. DOI: 10.1007/s10201-006-0187-8.
Henderson-Sellers B. Engineering Limnology. London: Pitman, 1984. 356 p.
Tsydenov B.O., Kay A., Starchenko A.V. Numerical modeling of the spring thermal bar and pollutant transport in a large lake // Ocean Modelling. 2016. V. 104. P. 73-83. DOI: 10.1016/j.ocemod.2016.05.009.
Tsydenov B.O. A numerical study of the thermal bar in shallow water during the autumn cooling // J. Great Lakes Res. 2019. V. 45. No. 3. P. 715-725. DOI: 10.1016/j.jglr. 2019.05.012.
Fasham M.J.R., Ducklow H.W., McKelvie S.M. A nitrogen-based model of plankton dynamics in the oceanic mixed layer // J. Mar. Res. 1990. V. 48. No. 3. P. 591-639. DOI: 10.1357/ 002224090784984678.
Fennel K., Wilkin J., Levin J., Moisan J., O’Reilly J., Haidvogel D. Nitrogen cycling in the Middle Atlantic Bight: Results from a three-dimensional model and implications for the North Atlantic nitrogen budget // Global Biogeochemical Cycles. 2006. V. 20. No. 3. GB3007. DOI: 10.1029/2005GB002456.
Hofmann E., Druon J.-N., Fennel K., Friedrichs M., Haidvogel D., Lee C., Mannino A., McClain C., Najjar R., O’Reilly J., Pollard D., Previdi M., Seitzinger S., Siewert J., Signorini S., Wilkin J. Eastern US continental shelf carbon budget: Integrating models, data assimilation, and analysis // Oceanography. 2008. V. 21. No. 1. P. 86-104. DOI: 10.5670/ oceanog.2008.70.
Gan J., Lu Z., Cheung A., Dai M., Liang L., Harrison P.J., Zhao X. Assessing ecosystem response to phosphorus and nitrogen limitation in the Pearl River plume using the Regional Ocean Modeling System (ROMS) // J. Geophys. Res. C: Oceans. 2014. V. 119. No. 12. P. 8858-8877. DOI: 10.1002/2014JC009951.
Redfield A.C. The biological control of chemical factors in the environment // Am. Sci. 1958. No. 46. P. 205-211.
Eppley R.W. Temperature and phytoplankton growth in the sea // Fish. Bull. 1972. V. 70. No. 4. P. 1063-1085.
Tsydenov B.O., Starchenko A.V. To the selection of heat flux parameterization models at the water-air interface for the study of the spring thermal bar in a deep lake // Proc. SPIE 9680, 96800H. 2015. P. 1-8. DOI: 10.1117/12.2205687.
Olson R. J. Differential photoinhibition of marine nitrifying bacteria: A possible mechanism for the formation of the primary nitrite maximum // J. Mar. Res. 1981. V. 39. No. 2. P. 227-238.
Orlanski I. A simple boundary condition for unbounded hyperbolic flows // J. Comput. Phys. 1976. V. 21. No. 3. P. 251-269. DOI: 10.1016/0021-9991(76)90023-1.
Leonard B. A stable and accurate convective modeling procedure based on quadratic upstream interpolation // Computer Methods in Applied Mechanics and Engineering. 1979. V. 19. No. 1. P. 59-98. DOI: 10.1016/0045-7825(79)90034-3.
Ильин В.П. Методы неполной факторизации для решения алгебраических систем. М.: Физматлит, 1995. 288 c.
Patankar S. Numerical heat transfer and fluid flow. CRC Press, 1980. 214 p.
Цыденов Б.О. Численное моделирование эффекта весеннего термобара в глубоком озере: дис.. канд. физ.-мат. наук. Томск, 2013. 145 с.
Wilcox D.C. Reassessment of the scale-determining equation for advanced turbulence models // AIAA J. 1988. V. 26. No. 11. P. 1299-1310. DOI: 10.2514/3.10041.
Holland P.R., Kay A., Botte V. Numerical modelling of the thermal bar and its ecological consequences in a river-dominated lake // J. Mar. Syst. 2003. V. 43. No. 1-2. P. 61-81. DOI: 10.1016/S0924-7963(03)00089-7.
Баргузин (река). URL: https://ru.wikipedia.org/wiki/%D0%91%D0%B0%D1%80%D0% B3%D1%83%D0%B7%D0%B8%D0%BD_(%D1%80%D0%B5%D0%BA%D0%B0) (дата обращения: 19.01.2020).
Ueno H., Katano T., Nakano S.-I., Mitamura O., Anbutsu K., Satoh Y., Drucker V., Sugiyama M. Abundance and community structure of picoplankton and protists in the microbial food web of Barguzin Bay, Lake Baikal. Aquatic Ecology. 2005. V. 39. No. 3. P. 263-270. DOI: 10.1007/s10452-005-6057-3.
Цыденов Б.О. Численное исследование распространения примеси в пресном озере на основе распределения мутности воды // Вычислительные технологии. 2017. Т. 22. № 1. С. 113-124.
Tsydenov B.O. Simulating phytoplankton growth during the spring thermal bar in a deep lake // J. Mar. Syst. 2019. V. 195. P. 38-49. DOI: 10.1016/j.jmarsys.2019.03.009.
Shimaraev M.N., Verbolov V.I., Granin N.G., Sherstyankin P.P. Physical Limnology of Lake Baikal: A Review. Irkutsk-Okayama, 1994. 81 p.
Вотинцев К.К. Гидрохимия // Проблемы Байкала / отв. ред. Г.И. Галазий, К.К. Вотинцев. Новосибирск, 1978. Т. 16(36). С. 124-146.
Tsydenov B.O. Numerical modeling of the effect of inflow water mineralization in the dynamics of the autumnal thermal bar in Kamloops Lake // Moscow Univ. Phys. Bull. V. 73. No. 4. P. 435-440. DOI: 10.3103/S0027134918040148.
Katano T., Nakano S.-I., Ueno H., Mitamura O., Anbutsu K., Kihira M., Satoh Y., Satoh T., Drucker V.V., Tanaka Y., Akagashi Y., Sugiyama M. Abundance and composition of the summer phytoplankton community along a transect from the Barguzin River to the central basin of Lake Baikal // Limnology. 2008. V. 9. No. 3. P. 243-250. DOI: 10.1007/s10201-008-0252-6.
Tsydenov B.O. Numerical modeling of the autumnal thermal bar // J. Mar. Syst. 2018. V. 179. P. 1-9. DOI: 10.1016/j.jmarsys.2017.11.004.
Цыденов Б.О. Численное моделирование весенней динамики планктона на примере Селенгинского мелководья оз. Байкал // Труды КарНЦ РАН. 2019. № 3. С. 114-123. DOI: 10.17076/lim948.
Tomberg I.V., Sorokovikova L.M., Popovskaya G.I., Bashenkhaeva N.V., Sinyukovich V.N., Ivanov V.G. Concentration dynamics of biogenic elements and phytoplankton at Selenga R. Mouth and in Selenga shallows (Lake Baikal) // Water Resources. 2014. V. 41. No. 6. P. 687695. DOI: 10.1134/S0097807814050157.
Домышева В.М., Шимараев М.Н., Сакирко М.В., Онищук Н.А. Динамика концентрации биогенных элементов и растворенных газов в воде озера Байкал в современный период // Органическое вещество и биогенные элементы во внутренних водоемах и морских водах: Материалы V Всерос. симп. с междунар. участием (Петрозаводск, 10-14 сент. 2012 г.). Петрозаводск, 2012. С. 23-26.
 A mathematical model for simulating the biogeochemical processes in a freshwater lake | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 65. DOI: 10.17223/19988621/65/4

A mathematical model for simulating the biogeochemical processes in a freshwater lake | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 65. DOI: 10.17223/19988621/65/4

Download full-text version
Counter downloads: 403