Restrictions on stress components and loads at the top of a four-corner pyramid with a rhombic base
Differences between two existing approaches in the study of state parameters (stresses, strains) near singular points are discussed. In the classical (asymptotic) approach, the singular point is excluded from the solution region. Boundary conditions are not specified at this point, and, thus, the state parameters have only asymptotic values. The second, non-classical approach, considers the singular point as a point of the continuum and the elementary volume associated with this point. The continuum point indicates a singular point location, and the elementary volume defines material characteristics and parameters of the stress-strain state. The number of specified conditions at such a point is greater than that specified at a regular (non-singular) boundary point of a body. Therefore, the problem of solid mechanics with a singular point is non-classical. In this paper, a non-classical approach is used to study state parameters at the vertex of a quadrangular pyramid with a rhombic base. The case of loading the pyramid near the top by surface forces and the case of the pyramid immersed in an elastic medium are considered. It is shown that the correct formulation of the mechanics problem for such cases is possible only with the implementation of the restrictions established in the work. Particular solutions are presented that are consistent with known analytical results. For the case of the inclusion of a pyramid in an elastic body, combinations of geometrical and material parameters resulting in an unlimited increase in stresses within elementary volumes containing the top of the pyramid are revealed. The research results will be used in solid mechanics problems in the formulation of specified conditions at the vertices of polyhedra. In particular, they may be applied when analyzing the stress state near the vertices of Knoop indenters used for studying samples, as well as near crystalline inclusions in the mechanics of composites.
Keywords
пирамида с ромбическим основанием,
особые точки,
сингулярность,
элементарный объем,
неклассические задачи,
rhombic pyramid,
singular points,
singularity,
elementary volume,
non-classical problemsAuthors
Pestrenin Valeriy M. | Perm State National Research University | PestreninVM@mail.ru |
Pestrenina Irena V. | Perm State National Research University | IPestrenina@gmail.com |
Landik Lidiya V. | Perm State National Research University | LidiaLandik@gmail.com |
Всего: 3
References
Williams M.L. Stress singularities resulting from various boundary conditions in angular corners in extension // J. App. Mech. 1952. No. 19. P. 526-528.
Уфлянд Я.С. Интегральные преобразования в задачах теории упругости. М.; Л.: Изд-во АН СССР, 1967. 402 c.
Bogy D.B. Two Edge-bonded Elastic Wedges of Different Materials and Wedge Angles under Surface Tractions // Trans. ASME. Ser. E. 1971. V. 38. No. 2. P. 87-96. http://dx.doi.org/ 10.1115/1.3408786.
Чобанян К.С. Напряжения в составных упругих телах. Ереван: Изд-во АН АрмССР, 1987. 338 с.
Sinclear G.B. Stress singularities in classical elasticity - I: Removal, interpretation and analysis // App. Mech. Rev. 2004. V. 57. No. 4. P. 251-297.
Sinclear G.B. Stress singularities in classical elasticity - II: Asymptotic identification // App. Mech. Rev. 2004. V. 57. No. 4. P. 385-439.
Barut A., Guven I., Madenci E. Analysis of singular stress fields at junctions of multiple dissimilar materials under mechanical and thermal loading // Int. J. of Solid and Structures. 2001. V. 38. No. 50-51. P. 9077-9109.
Шемякин Е.И. О краевых задачах теории упругости для областей с угловыми точками (плоская деформация) // Докл. АН. 1996. Т. 347. № 3. С. 342-345.
Paggi M., Carpintery A. On the stress singularities at multimaterial interfaces and related analogies with fluid dynamics and diffusion // Mech. Rev. 2008. V. 61. P. 020801. DOI: 10.1115/1.2885134.
Luangarpa C., Koguchi H. Analysis of singular stresses at a vertex and along a singular line in three-dimensional bonded joints using a conservative integral // Europ. J. of Mechanics -A/Solids. 2016. V. 60. P. 208-216. DOI: 10.1016/j.euromechsol.2016.08.002.
Кондратьев В.А. Краевые задачи для эллиптических уравнений в областях с коническими или угловыми точками // Тр. Моск. матем. об-ва. 1967. Т. 16. С. 209-292.
Мазья В.Г., Пламеневский Б.А. О коэффициентах в асимптотике решений эллиптических краевых задач вблизи ребра // ДАН СССР. 1976. Т. 229. № 1. С. 33-36.
Партон В.З., Перлин П.И. Методы математической теории упругости. М.: Наука, 1981. 688 с.
Kozlov V.A., Mazya V.G., Schwab C. On singularities of solutions of the displacement problem of linear elasticity near the vertex of a cone // Arch. Ration. Mech. Anal. 1992. No. 119. P. 197-227.
Pestrenin V.M., Pestrenina I. V., Landik L.V. Stress state at the vertex of a composite wedge, one side of which slides without friction along a rigid surface // Latin American Journal of Solids and Structures. 2017. V. 14. No. 11. P. 2067-2088. DOI: 10.1590/1679-78253826.
Pestrenin V.M., Pestrenina I.V., Landik L.V. Nonstandart problems for structural elements with spatial composite ribs // Mechanics of Composite Materials. 2015. V. 51. No. 4. P. 489-504.
Pestrenin V.M., Pestrenina I.V. Constraints on stress components at the internal singular point of an elastic compound structure // Mechanics of Composite Materials. 2017. V. 53. No. 1. P. 107-116. DOI: 10.1007 / s11029-017-9644-1.
Пестренин В.М., Пестренина И.В., Ландик Л.В., Эйсмонт Е.Р. Напряженное состояние вблизи линии особых точек на свободной от нагрузки торцевой поверхности слоистого цилиндра // Вестник Томского государственного университета. Математика и механика. 2018. № 57. С. 84-98. DOI 10.17223/19988621/57/7.
Пестренин В.М., Пестренина И.В., Ландик Л.В. Компоненты напряжений и ограничения на нагрузку в вершинах правильных треугольной и четырехугольной пирамид // Вестник Томского государственного университета. Математика и механика. 2018. № 56. С. 102-119.
Пестренин В.М., Пестренина И.В., Ландик Л.В. Ограничения на параметры напряженного состояния в вершине кругового конуса // Вестник Томского государственного университета. Математика и механика. 2018. № 52. С. 89-101. DOI: 10.17223/ 19988621/56/9