A mathematical model of a selective nanopore
Membrane separation of mixtures is widely used in chemical, fuel and energy, pharmaceutical, food, and other industries. In particular, mixed gases are separated by porous carbon membranes of various designs. This work deals with a study of selective properties of a carbon nanopore in terms of its ability to separate helium-methane mixtures. Gaining knowledge of nanopore characteristics allows us to design nanoporous membranes that are optimal for our purposes. The membrane composed of carbon nanoparticles has a potential energy barrier representing the summed energy of the interaction between the molecule passing through a membrane and each nanoparticle of the structure. The trajectory and velocity of the molecule are obtained when solving a system of differential equations using the Runge-Kutta fourth-order method. Permeability of the resulting filter element is determined by the molecular dynamics method as a ratio of the molecules passed through the membrane to the total number of launched ones. Mathematical modeling of the described problem shows good selective properties of the carbon nanopore in terms of separation of a helium-methane mixture. Based on the calculated results, the most efficient pore diameter has been revealed, as well as the optimal density of the material providing the highest separation ratio for the mixtures under consideration.
Keywords
нанопора,
мембрана,
разделение газов,
сепарация газов,
фильтрация,
наночастицы,
движение молекул,
поле потенциальных сил,
численные методы,
nanopore,
membrane,
gas separation,
permeability,
filtration,
nanoparticles,
molecular motion,
field of potential forces,
numerical methodsAuthors
Poteryaeva Valentina A. | Tomsk State University | valentina.poteryaeva@gmail.com |
Всего: 1
References
Xu L., Tsotsis T.T., Sahimi M. Nonequilibrium molecular dynamics simulation of transport and separation of gases in carbon nanopores. I. Basic results // The Journal of Chemical Physics. 1999. V. 111(7). P. 3252-3264. DOI: 10.1063/1.479663.
Chen G., An Y., Shen Y., Wang Y., Tang Z, Lu B,, Zhang D. Effect of Pore Size on CH4/N2 Separation using Activated Carbon // Chinese Journal of Chemical Engineering. 2020. DOI: 10.1016/j.cjche.2019.12.018.
Raghavan B., Gupta T. H2/CH4 gas separation using graphene drilled with elliptical pores // Materials Today: Proceedings. 2018. V. 5(10). P. 20972-20976. DOI: 10.1016/j.matpr. 2018.06.487.
Liu H., Dai S., Jiang D. Permeance of H2 through porous graphene from molecular dynamics // Solid State Communications. 2013. V. 175-176. P. 101-105. DOI: 10.1016/j.ssc.2013. 07.004.
Wu T., Xue Q., Ling C., Shan M., Liu Z., Tao Y., Li X. Fluorine-modified porous graphene as membrane for CO2/N2 separation: Molecular dynamic and first-principles simulations // The Journal of Physical Chemistry C. 2014. V. 118(14). P. 7369-7376. DOI:10.1021/jp4096776.
Liu H., Dai S., Jiang D. Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics // Nanoscale. 2013. V. 5(20). P. 9984. DOI: 10.1039/c3nr02852f.
Du H., Li J., Zhang J., Su G., Li X., Zhao Y. Separation of hydrogen and nitrogen gases with porous graphene membrane // The Journal of Physical Chemistry C. 2011. V. 115(47). P. 23261-23266. DOI: 10.1021/jp206258u.
Mohammad S., Gharibzahedi R., Karimi-Sabet J. Gas separation in nanoporous graphene from molecular dynamics simulation // Chemical Product and Process Modeling. 2016. V. 11(1). DOI: 10.1515/cppm-2015-0059.
Bartolomei M., Carmona-Novillo E., Hernandez M.I., Campos-Martinez J., Pirani F., Giorgi G. Graphdiyne pores: “Ad Hoc” openings for helium separation applications // The Journal of Physical Chemistry C. 2014. V. 118(51). P. 29966-29972. DOI: 10.1021/jp510124e.
Nikkho S., Mirzaei M., Sabet J.K., Moosavian M.A., Hedayat S.M. Enhanced quality of transfer-free graphene membrane for He/CH4 separation // Separation and Purification Technology. 2019. P. 115972. DOI: 10.1016/j.seppur.2019.115972.
Chang R.W., Lin C.J., Liou S.Y.H., Banares M.A., Guerrero-Perez M.O., Martin Aranda R.M. Enhanced cyclic CO2/N2 separation performance stability on chemically modified N-doped ordered mesoporous carbon // Catalysis Today. 2019. DOI: 10.1016/j.cattod.2019.08.004.
Li L., Song C., Jiang H., Qiu J., Wang T. Preparation and gas separation performance of supported carbon membranes with ordered mesoporous carbon interlayer // Journal of Membrane Science. 2014. V. 450. P. 469-477. DOI: 10.1016/j.memsci.2013.09.032.
Mahurin S.M., Lee J.S., Wang X., Dai S. Ammonia-activated mesoporous carbon membranes for gas separations // Journal of Membrane Science. 2011. V. 368(1-2). P. 41-47. DOI: 10.1016/j.memsci.2010.11.007.
Choi S.-H., Qahtani M.S., Qasem E.A. Multilayer thin-film composite membranes for helium enrichment // Journal of Membrane Science. 2018. V. 553. P. 180-188. DOI: 10.1016/ j.memsci.2018.02.057.
Choi S.-H., Sultan M.M.B., Alsuwailem A.A., Zuabi S.M. Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures // Separation and Purification Technology. 2019. V. 222. P. 152-161. DOI: 10.1016/ j.seppur.2019.04.036.
Потеряева В.А., Усенко О.В., Шерстобитов А.А. Дифференциальная проницаемость ультратонкого пористого слоя монодисперсных наночастиц // Вестник Томского госуниверситета. Математика и механика. 2015. № 2(34). С. 96-102. DOI: 10.17223/ 19988621/34/9.
Bubenchikov M.A., Bubenchikov A.M., Usenko O.V., Poteryaeva V.A., Zhambaa Soninbaiar. Separation of gases using ultra-thin porous layers of monodisperse nanoparticles // EPJ Web of Conferences. 2016. V. 110. P. 01014-1-01014-6. DOI: 10.1051/epjconf/201611001014.
Бубенчиков А.М., Бубенчиков М.А., Потеряева В.А., Либин Э.Е. Волновая проницаемость слоя компактированных наночастиц // Вестник Томского госуниверситета. Математика и механика. 2016. № 3(41). С. 51-57. DOI: 10.17223/19988621/41/5.
Потеряева В.А., Усенко О.В., Шерстобитов А.А. Дифференциальная проницаемость слоя полидисперсных наночастиц // Электротехника. Электротехнология. Энергетика: в 3 ч.: сборник научных трудов VII Международной научной конференции молодых ученых. Новосибирск: Изд-во НГТУ, 2015. Ч. 2. Секция «Электротехнология». С. 101-104.
Bubenchikov M.A., Poteryaeva V.A., Ukolov A.V. Helium passage through homogeneous ultrafine hydrocarbon layers // EPJ Web of Conferences. 2017. V. 110. P. З01085. DOI: 10.1051/matecconf/201711001085.
Бубенчиков А.М., Бубенчиков М.А., Потекаев А.И., Либин Э.Е., Худобина Ю.П. Потенциальное поле углеродных тел как основа сорбционных свойств барьерных газовых систем // Изв. вузов. Физика. 2015. Т. 58. № 7. С. 10-15.
Ortega J. Scientific computing and computer science. N.Y.: Academic Press, 1976. 340 с.