Effect of grain size distribution on the strength and strain properties of Zr-Nb alloys under tension at high strain rates
Two-level computer simulation is used to study the effect of bimodal grain size distribution on the plastic flow, damage evolution, and fracture of Zr-Nb alloys with a hexagonal close-packed crystal lattice under tension at strain rates of 100 and 1000 s-1. The developed computational model allows one to describe the strain and fracture of the Zr-1 % Nb alloy with unimodal and bimodal grain structures under tension at high macroscopic strain rates. It is shown that the damages that cause the fracture of the Zr-1 % Nb alloy arise at the boundaries between coarse grains and volumes with an ultrafine-grained structure at high tensile strain rates. A sharp increase in the strain to fracture and a smooth decrease of the yield strength and tensile strength of the Zr-1 % Nb alloy are observed at increasing volume concentration of large grains from 0 to 30 %. A rational combination of the increased yield strength and tensile strength with satisfactory ductility for strain rates ranging from 100 to 1000 s-1 can be achieved in the Zr-1 % Nb alloy when the ratio of the volume of submicron grains to the volume of coarse grains is about 3:7. Numerical simulation results show an insignificant impact of the concentration of dispersed particles of zirconium hydrides with sizes varying from 25 to 40 nm segregated in a grain boundary phase on the tensile strength of the Zr-1 % Nb alloys and on the strain to failure in the studied range of strain rates and temperature.
Keywords
эволюция повреждений,
распределение зерен по размерам,
цирконий-ниобиевые сплавы,
высокоскоростная деформации,
evolution of damages,
grain size distribution,
zirconium-niobium alloys,
high strain rateAuthors
Skripnyak Nataliya V. | Tomsk State University | natali.skrp@mail.ru |
Iokhim Kristina V. | Tomsk State University | iokhim.k@mail.ru |
Всего: 2
References
Guo D., Zhang Z., Zhang G., Li M., Shi Y., Ma T., Zhang X. An extraordinary enhancement of strain hardening in fine-grained zirconium // Materials Science and Engineering: A. 2014. V. 591. P. 167-172. DOI: 10.1016/j.msea.2013.10.086.
Vazquez C.A., Fortis A.M. Mechanical Tests and Micro structural Characterization of Hydrided Zr-1 wt% Nb // Procedia Materials Science. 2012. V. 1. P. 520-527. DOI: 10.1016/j.mspro.2012.06.070.
Kim H.G., Park S.Y., Lee M.H., Jeong Y.H., Kim S.D. Corrosion and microstructural characteristics of Zr-Nb alloys with different Nb contents // Journal of Nuclear Materials. 2008. V. 373(1-3). P. 429-432. DOI: 10.1016/j.jnucmat.2007.05.035.
Sharkeev Y.P., Vavilov V.P., Skripnyak V.A., Legostaeva E.V., Eroshenko A.Y., Belyavskaya O.A., Ustinov A.M., Klopotov A.A., Chulkov A.O., Kozulin A.A., Skrypnyak V.V., Zhilyakov A. Yu., Kouznetsov V.P., Kuimova M.V. Research on the processes of deformation and failure in coarse- and ultrafine-grain states of Zr-1Nb alloys by digital image correlation and infrared thermography // Materials Science and Engineering: A. 2020 V. 784. Art. 139203. DOI: 10.1016/j.msea.2020.139203.
Chen Y., Hjelen J., Roven H.J. Application of EBSD technique to ultrafine grained and nanostructured materials processed by severe plastic deformation: Sample preparation, parameters optimization and analysis // Transactions of Nonferrous Metals Society of China. 2012. V. 22(8). P. 1801-1809. DOI: 10.1016/s1003-6326(11)61390-3.
Behera A.N., Chaudhuri A., Kapoor R., Chakravartty J.K., Suwas S. High temperature deformation behavior of Nb-1 wt. % Zr alloy // Materials and Design. 2016. V. 92. P.750-759. DOI: 10.1016/j.matdes.2015.12.077.
Raeisinia B., Sinclair C.W., Poole W.J., and Tome C.N. On the impact of grain size distribution on the plastic behaviour of polycrystalline metals // Materials Science and Engineering: A. 2008. V. 16. 025001. DOI: 10.1088/0965-0393/16/2/025001.
Kumar K., Szpunar J.A. EBSD studies on microstructure and crystallographic orientation of S-hydrides in Zircaloy-4, Zr-1% Nb and Zr-2.5% Nb // Materials Science and Engineering: A. 2011. V. 528(21). P. 6366-6374. DOI:10.1016/j.msea.2011.05.022.
Yang H., Kano S., Shen J., McGrady J., Zhao Z., Duan Z., Abe H. On the strength-hardness relationships in a Zr-Nb alloy plate with bimodal basal texture microstructure // Materials Science and Engineering: A. 2018. V. 732. P. 333-340. DOI: 10.1016/j.msea.2018.07.028.
Wang Y.M., Chen M.W., Zhou F.H., Ma E. High tensile ductility in a nanostructured metal // Nature. 2002. V. 419. P. 912-5. DOI: 10.1038/nature01133.
Yang H.L., Matsukawa Y., Kano S., Duan Z.G., Murakami K., Abe H. Investigation on microstructural evolution and hardening mechanism in dilute Zr-Nb binary alloys // Journal of Nuclear Materials. 2016. V. 481. P. 117-124. DOI: 10.1016/j.jnucmat.2016.09.016.
Kapoor R., Sarkar A., Singh J., Samajdar I., Raabe D. Effect of strain rate on twinning in a Zr alloy // Scripta Materialia. 2014. V. 74. P. 72-75. DOI: 10.1016/j.scriptamat.2013.10.025.
Puls M.P. Properties of Bulk Zirconium Hydrides // Engineering Materials. 2012. P. 7-52. DOI: 10.1007/978-1-4471-4195-2_2.
Skripnyak V.A., Skripnyak V.V., Skripnyak E.G., Skripnyak N.V. Modelling of the mechanical response of Zr-Nb and Ti-Nb alloys in a wide temperature range // International Journal of Mechanics and Materials in Design. 2019. DOI: 10.1007/s10999-019-09447-z.
Skripnyak V.A., Skripnyak N.V., Skripnyak E.G., Skripnyak V.V. (2017). Influence of grain size distribution on the mechanical behavior of light alloys in wide range of strain rates // Proceedings of the 7th International Conference on Mechanics and Materials in Design, Albufeira/Portugal 11-15 June 2017. DOI: 10.1063/1.4971664.
Neilsen K.L., Tvergaard V. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model // Eng. Fract. Mech. 2010. V. 77. P. 1031-1047. DOI: 10.1016/ j.engfracmech.2010.02.031.
Tvergaard V. Study of localization in a void-sheet under stress states near pure shear // Int. J. Solids Struct. 2015. V. 75-76. P. 134-142. DOI: 10.1016/j.ijsolstr.2015.08.008.
Souza A.C., Rossi J.L., Tsakiropoulos P., Martinez L.G., Grandini C.R., Ceoni F.C., Mucsi C.S., Correa H.P.S. Preparation and Melting of Zr-1.0Nb Alloy // Materials Science Forum. 2016. V. 869. P. 578-584. DOI: 10.4028/www.scientific.net/msf.869.578.
Harte A., Griffiths M., Preuss M. The characterisation of second phases in the Zr-Nb and Zr-Nb-Sn-Fe alloys: A critical review. Journal of Nuclear Materials. 2018. V. 505. P. 227-239. DOI: 10.1016/j.jnucmat.2018.03.030.
Verleysen P., Peirs J. Quasi-static and high strain rate fracture behaviour of Ti6Al4V // Int. J. Impact Eng. 2017. V. 108. P. 370-388. DOI: 10.1016/j.ijimpeng.2017.03.001.
Frost H.J., Ashby M.F. Deformation-Mechanism Maps. Oxford, UK: Pergamon Press, 1982.
Shi Y., Li M., Guo D., Ma T., Zhang Z., Zhang G., Zhang X. Tailoring grain size distribution for optimizing strength and ductility of multi-modal Zr // Materials Letters. 2013. V. 108. P. 228-230. DOI: 10.1016/j.matlet.2013.07.001.