An electromagnetic method for frequency analysis of transverse vibrations of a beam | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 66. DOI: 10.17223/19988621/66/9

An electromagnetic method for frequency analysis of transverse vibrations of a beam

Vibration-based diagnostics of constructions is an obligatory technical procedure in mechanical engineering. In this regard, there is a problem of an adequate theoretical description of vibration processes in various structures with account for end fixity conditions, as well as the creation of experimental facilities for non-contact testing. The paper presents a theoretical basis and experimental verification results for a method of electromagnetic frequency analysis of rod systems. The essence of the method is the experimental determination of natural oscillation frequencies and their comparison with reference values. The main attention is paid to a theoretical description of transverse vibrations of a cantilever conductive rod in an external magnetic field in order to determine reference frequencies of a defect-free sample. The presence of the external magnetic field gives rise to the distributed electromagnetic force exerted on the rod. In the case of natural oscillations, the magnetic force is damping, which leads to a change in damping factors of partial oscillations. The electromagnetic effect is selective towards vibrational modes; hence, the damping factors of various partial oscillations of the rod vary to different degrees. This fact allows one to determine an optimal location of the area with acting magnetic field, as well as its width when measuring a given frequency of sample testing. The proposed method has several advantages: indestructibility of the sample, non-contact measurements, invariability of mechanical properties of the sample during the tests.

Download file
Counter downloads: 120

Keywords

стержень, поперечные колебания, магнитное поле, вибрации, вибродиагностика, внутреннее трение, beam, transverse oscillations, magnetic field, vibrations, vibrodiagnostics, internal friction

Authors

NameOrganizationE-mail
Kuznetsov Fedor Yu.Tomsk Polytechnic Universitykuznetsov_f@mail.ru
Всего: 1

References

Петрухин В.В., Петрухин С.В. Основы вибродиагностики и средства измерения вибрации: учеб. пособие. М.: Инфра-Инженерия, 2010. 176 с.
Томилин А.К., Байзакова Г.А. Управление частотами колебаний упругих электромеханических систем // Вестник Томского государственного университета. Математика и механика. 2012. № 3(19). С. 87-92.
Томилин А.К., Байзакова Г.А. Электромагнитный способ подстройки частоты виброметра // Изв. вузов. Физика. 2012. № 6/2. С. 244-247.
Томилин А.К. Колебания электромеханических систем с распределенными параметрами. Усть-Каменогорск, 2004. 286 с.
Tomilin A.K., Kurilskaya N.F. Vibrations of a conductive string in a nonstationary magnetic field under presence of two nonlinear factors // J. Applied and Industrial Mathematics. 2017. V. 11. No. 4. P. 600-604. DOI: 10.1134/S1990478917040184.
Бабаков И.М. Теория колебаний. М.: Наука, 1968. 560 с.
Ильгамов М.А., Хакимов А.Г. Диагностика повреждений консольной балки с надрезом // Дефектоскопия. 2009. № 6. С. 83-89.
Ахтямов М.А, Каримов А.Р. Диагностирование местоположения трещины в стержне по собственным частотам продольных колебаний // Техническая акустика (электронный журнал). 2010. № 3.
Гладвелл Г.М.Л. Обратные задачи теории колебаний. М.; Ижевск: Институт компьютерных исследований, 2008. 608 с.
Лаврович Н.И. Собственные частоты колебаний стержней // Омский научный вестник. 2000. С. 106-108.
 An electromagnetic method for frequency analysis of transverse vibrations of a beam | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 66. DOI: 10.17223/19988621/66/9

An electromagnetic method for frequency analysis of transverse vibrations of a beam | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 66. DOI: 10.17223/19988621/66/9

Download full-text version
Counter downloads: 368