An iterative method for the navier-stokes equations in the problem of a viscous incompressible fluid flow around a thin plate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 66. DOI: 10.17223/19988621/66/11

An iterative method for the navier-stokes equations in the problem of a viscous incompressible fluid flow around a thin plate

In this paper, the problem on a viscous fluid flow around a thin plate is considered using the exact Navier-Stokes equations. An iterative method is proposed for small velocity perturbations with respect to main flow velocities. At each iterative step, an integral equation is solved for a function of the viscous friction over the plate. The collocation method is used at each iteration step to reduce an integral equation to a system of linear algebraic equations, and the shooting method based on the classical fourth-order Runge-Kutta technique is applied. The solution obtained at each iteration step is compared with the Harrison-Filon solution at low Reynolds numbers, with the classical Blasius solution, and with the results computed using the direct numerical finite-volume method in the ANSYS CFX software for moderate and high Reynolds numbers. The proposed iterative method converges in a few steps. Its accuracy is rather high for small and large Reynolds number, while the error can reach 15% for moderate values.

Download file
Counter downloads: 126

Keywords

уравнения Навье - Стокса, итерационный метод, вязкая жидкость, тонкая пластинка, интегральные уравнения, Navier-Stokes equations, iterative method, viscous fluid, thin plate, integral equations

Authors

NameOrganizationE-mail
Sumbatyan Mezhlum A.Institute of Mathematics, Mechanics and Computer Science named after I.I. Vorovichsumbat@math.rsu.ru
Berdnik Yanina A.Southern Federal Universityyaninaberdnik@mail.ru
Bondarchuk Aleksey A.Southern Federal Universitymelchior@list.ru
Всего: 3

References

Blasius H. Boundary layers in fluids with little friction. Washington D.C.: National Advisory Committee for Aeronautics. 1950. 57 p.
Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1973. 848 с.
Goldstein S. Concerning some solutions of the boundary layer equations in hydrodynamics // Mathematical Proceedings of the Cambridge Philosophical Society. 1930. V. 26. P. 1-30.
McLachlan R.I. The boundary layer on a finite flat plate // Physics of Fluids A. 1991. V. 3(2). P. 341-348.
Kaiyuan L., Zhaohua Y., Qiaohong L. Some experiences of improving the speed of numerical Navier-Stokes solver using CUDA // J. Algorithms and Computational Technology. 2014. V. 8. P. 287-300.
Brunschwig A., Rondi C. Laminar flow across a flat plate // J. Numerical Analysis for Engineering. 2001. P. 1-18.
Feng X.F., Tian Z.F., Dai S.Q. Numerical solution of the incompressible Navier-Stokes equations with exponential type schemes // Int. J. Computer Mathematics. 2006. V. 82(9). P. 1167-1176.
Quartapelle L. Numerical solution of the incompressible Navier-Stokes equations. Basel: Birkhauser-Verlag, 2012. 292 p.
Lamb H. Hydrodynamics. C.U.P, 1932. 738 p.
Александров В.М., Коваленко Е.В. Задачи механики сплошных сред со смешанными граничными условиями. М.: Наука, 1986. 335 с.
Бердник Я.А. Итерационный метод для стационарных уравнений Навье - Стокса в задаче обтекания тонкой пластинки // Изв. вузов. Северо-Кавказский регион. Естественные науки. 2014. № 1(179). С. 30-34.
Sumbatyan, M.A., Scalia, A. Equations of mathematical diffraction theory. CRC Press, 2005. 291 p.
Abramowitz M., Stegun I. Handbook of mathematical functions with formulas, graphs, and mathematical tables. N.Y.: Dover, 1972. 1046 p.
Bateman H.,Erdelyi A. Tables of integral transforms. N.Y.: McGraw-Hill, 1954. 451 p.
Berdnik Y., Beskopylny A. The approximation method in the problem on a flow of viscous fluid around a thin plate // Aircraft Engineering and Aerospace Technology. 2019. V. 91(6). pp. 807-813.
Schlichting H. Boundary-layer theory. N.Y.: Mc Graw-Hill, 1955. 535 p.
 An iterative method for the navier-stokes equations in the problem of a viscous incompressible fluid flow around a thin plate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 66. DOI: 10.17223/19988621/66/11

An iterative method for the navier-stokes equations in the problem of a viscous incompressible fluid flow around a thin plate | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 66. DOI: 10.17223/19988621/66/11

Download full-text version
Counter downloads: 368