Study of the effect of TiB2 particles on the structure, deformation behavior, and properties of the aluminum alloy 1550
In this work, the special master alloys containing aluminum and TiB2 powder with bimodal particle size distribution in three mixture compositions are prepared. The master alloys are infused into the melts using an external ultrasound source. The castings with particles had smaller grain sizes than the initial castings without particles. It is found that the hardness, yield strength, and ultimate tensile strength reach higher values with an increase in the relative elongation of the cast alloys with added particles. A warm rolling mode is employed for the studied alloys to obtain sheet blanks. It is shown that the staged shrinkage of the billets up to deformation of 80 % with periodic heating up to 300 °C allows one to obtain defect-free sheet products. The structure of the rolled sheet-alloys is characterized by the plate-shaped grains elongated along the rolling direction with pockets of submicron-sized grains in between. The strength properties of the studied rolled alloys exceeded those of the cast alloys. In the case of the rolled alloys, an increase in the yield strength, ultimate tensile strength, and ductility is revealed for the alloys with particles as compared to the ones with no particles added.
Keywords
light alloys,
nanosized particles,
titanium diboride,
hardness,
structure,
ultimate tensile strength,
yield strengthAuthors
Vorozhtsov Aleksandr B. | Tomsk State University | abv1953@mail.ru |
Platov Vladimir V. | Tomsk State University | vova.platov.85@mail.ru |
Kozulin Aleksandr A. | Tomsk State University | kozulyn@ftf.tsu.ru |
Khrustalev Anton P. | Tomsk State University | tofik0014@gmail.com |
Mishin Ivan P. | Institute of Strength Physics and Materials Science of Siberian Branch Russian Academy of Sciences | mip@ispms.tsc.ru |
Zhukov Il’ya A. | Tomsk State University | gofra930@gmail.com |
Всего: 6
References
Фрактография и атлас фрактограмм: справ. изд.: пер. с англ. / под ред. Дж. Феллоуза. М.: Металлургия, 1982. 489 c.
Zhukov I.A., Ziatdinov M.Kh., Vorozhtsov A.B., Zhukov A.S., Vorozhtsov S.A., Promakhov V.V. Self-propagating high-temperature synthesis of Al and Ti borides // Russian Physics Journal. 2016. V. 59. No. 8. P. 1324-1326. DOI: 10.1007/s11182-016-0911-8.
Zhukov I.A., Promakhov V.V., Matveev A.E., Platov V.V., Khrustalev A.P., Dubkova Ya.A., Vorozhtsov S.A., Potekaev A.I. Principles of Structure and Phase Composition Formation in Composite Master Alloys of the Al-Ti-B4C Systems Used for Aluminum Alloy Modification // Russian Physics Journal. 2018. V. 60. No. 11. P. 2025-2031. DOI: 10.1007/s11182-018-1319-4.
ASTM E10:2017. Standard Test Method for Brinell Hardness of Metallic Materials.
ASTM E8M:2008. Standard test method for tension testing of metallic materials.
Kang J., Wilkinson D.S., Jain M., Embury J.D., Beaudoin A.J., Kim S., Mishira R., Sachdev A.K. On the sequence of inhomogeneous deformation processes occurring during tensile deformation of strip cast AA5754 // Acta Materialia. 2006. V. 54. P. 209-218. DOI: 10.1016/j.actamat.2005.08.045.
Mcqueen H.J., Evangelista E., Bowles J., Crawford G. Hot deformation and dynamic recrystallization of Al-5Mg-0.8Mn alloy // Metal Science. 1984. V. 18(8). P. 395-402. DOI: 10.1179/030634584790419854.
Eskin D.G., Al-Helal K., Tzanakis I. Application of a plate sonotrode to ultrasonic degassing of aluminum melt: acoustic measurements and feasibility study // Journal of Materials Processing Technology. 2015. V. 222. P. 148-154. DOI: 10.1016/j.jmatprotec.2015.03.006.
Xuan Y., Nastac L. The role of ultrasonic cavitation in refining the microstructure of aluminum based nanocomposites during the solidification process // Ultrasonics. 2018. V. 83. P. 94-102. DOI: 10.1016/j.ultras.2017.06.023.
Gao Q., Wu S., Lu S., Xiong X., Du R., An P. Improvement of particles distribution of in-situ 5 vol% TiB2 particulates reinforced Al-4.5 Cu alloy matrix composites with ultrasonic vibration treatment // Journal of Alloys and Compounds. 2017. V. 692. P. 1-9. DOI: 10.1016/j.jallcom.2016.09.013.
Zhukov I.A., Kozulin A.A., Khrustalyov A.P., Matveev A.E., Platov V.V., Vorozhtsov A.B., Zhukova T.V., Promakhov V.V. The Impact of Particle Reinforcement with Al2O3, TiB2, and TiC and Severe Plastic Deformation Treatment on the Combination of Strength and Electrical Conductivity of Pure Aluminum // Metals. 2019. V. 9. No. 1. P. 65-1-65-10. DOI: 10.3390/met9010065.
Greer A.L., Bunn A.M., Tronche A., Evans P.V., Bristow D.J. Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al-Ti-B // Acta Materialia. 2000. V. 48. No. 11. P. 2823-2835. DOI: 10.1016/S1359-6454(00)00094-X.
Liu H., Gao Y., Qi L., Wang Y., Nie Jian-Feng. Phase-field simulation of Orowan strengthening by coherent precipitate plates in an aluminum alloy // Metallurgical and Materials Transactions A. 2015. V. 46. No. 7. P. 3287-3301. DOI: 10.1007/s11661-015-2895-3.
Ezatpour H.R., Parizi M.T., Sajjadi S.A., Ebrahimi G.R., Chaichi A. Microstructure, mechanical analysis and optimal selection of 7075 aluminum alloy based composite reinforced with alumina nanoparticles // Materials Chemistry and Physics. 2016. V. 178. P. 119-127. DOI: 10.1016/j.matchemphys.2016.04.078.
Vorozhtsov S.A., Eskin D.G., Tamayo J., Vorozhtsov A.B., Promakhov V.V., Averin A.A., Khrustalyov A.P. The application of external fields to the manufacturing of novel dense composite master alloys and aluminum-based nanocomposites // Metallurgical and Materials Transactions A. 2015. V. 46. No. 7. P. 2870-2875. DOI: 10.1007/s11661-015-2850-3.
Mousavian R.T., Khosroshahi R.A., Yazdani S., Brabazon D., Boostani A.F. Fabrication of aluminum matrix composites reinforced with nano-to micrometer-sized SiC particles // Materials & Design. 2016. V. 89. P. 58-70. DOI: 10.1016/j.matdes.2015.09.130.
Fan Z., Wang Y., Zhang Y., Qin T., Zhou X.R., Thompson G.E., Pennycook T., Hashimoto T. Grain refining mechanism in the Al/Al-Ti-B system // Acta Materialia. 2015. V. 84. P. 292304. DOI: 10.1016/j.actamat.2014.10.055.
Kotadia H.R., Qian M., Eskin D.G., Das A. On the microstructural refinement in commercial purity Al and Al-10 wt% Cu alloy under ultrasonication during solidification // Materials & Design. 2017. V. 132. P. 266-274. DOI: 10.1016/j.matdes.2017.06.065.
Li Y., Bai Q.L., Liu J.C., Li HX., Du Q., Zhang J.S., Zhuang L.Z. The influences of grain size and morphology on the hot tearing susceptibility, contraction, and load behaviors of AA7050 alloy inoculated with Al-5Ti-1B master alloy // Metallurgical and Materials Transactions A. 2016. V. 47. No. 8. P. 4024-4037. DOI: 10.1007/s11661-016-3543-2.
Zhukov I., Promakhov V., Vorozhtsov S., Kozulin A., Khrustalyov A., Vorozhtsov A. Influence of Dispersion Hardening and Severe Plastic Deformation on Structure, Strength and Ductility Behavior of an AA6082 Aluminum Alloy // JOM. 2018. V. 70. No. 11. P. 2731-2738. DOI: 10.1007/s11837-018-3132-5.
Li B., Zhang Z., Shen Y., Hu W., Luo L. Dissimilar friction stir welding of Ti-6Al-4V alloy and aluminum alloy employing a modified butt joint configuration: Influences of process variables on the weld interfaces and tensile properties // Materials & Design. 2014. V. 53. P. 838-848. DOI: 10.1016/j.matdes.2013.07.019.
Ahmad Z. The properties and application of scandium-reinforced aluminum // JOM. 2003. V. 55. No. 2. P. 35-39. DOI: 10.1007/s11837-003-0224-6.
Yan S.J., Dai S.L., Zhang X.Y., Yang C., Hong Q.H., Chen J.Z., Lin Z.M. Investigating aluminum alloy reinforced by graphene nanoflakes // Materials Science and Engineering: A. 2014. V. 612. P. 440-444. DOI: 10.1016/j.msea.2014.06.077.
Vorozhtsov S., Minkov L., Dammer V., Khrustalyov A., Zhukov I., Promakhov V., Vorozhtsov A., Khmeleva M. Ex situ introduction and distribution of nonmetallic particles in aluminum melt: modeling and experiment // JOM. 2017. V. 69. No. 12. P. 2653-2657. DOI: 10.1007/s11837-017-2594-1.
Lee S., Utsunomiya A., Akamatsu H., Neishi K., Furukawa M., Horita Z., Langdon T.G. Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafinegrained Al-Mg alloys // Acta Materialia. 2002. V. 50. No. 3. P. 553-564. DOI: 10.1016/S1359-6454(01)00368-8.
Filatov Y.A., Yelagin V.I., Zakharov V.V. New Al-Mg-Sc alloys // Materials Science and Engineering: A. 2000. V. 280. No. 1. P. 97-101. DOI: 10.1016/S0921-5093(99)00673-5. Исследование влияния частиц T1B2 на структуру, деформационное поведение и свойства 113
Jones R.H. The influence of hydrogen on the stress-corrosion cracking of low-strength Al-Mg alloys // JOM. 2003. V. 55. No. 2. P. 42-46. DOI: 10.1007/s11837-003-0225-5.
Kawazoe M., Shibata T., Mukai T., Higashi K. Elevated temperature mechanical properties of A 5056 Al-Mg alloy processed by equal-channel-angular-extrusion // Scripta Materialia. 1997. V. 36. No. 6. P. 699-705. DOI: 10.1016/S1359-6462(96)00446-0.