Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 67. DOI: 10.17223/19988621/67/12

Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets

The paper presents the results of the methodology developed for calculating unsteady gas-dynamic processes occurring at the launch of missiles, in the gas-dynamic paths of rocket engines, and in the external regions. The method accounts for the variation in the geometry of the solid-propellant charge in the course of solid-propellant rocket engine operation and in the geometry of the computational domain at the rocket launch. The analysis of the unsteady force impact of the supersonic jet on the launch surface is carried out. It is shown that the maximum force action is located in the vicinity of the Mach disks of the unperturbed jet. Numerical studies of gasdynamic processes at the launch of a model solid-propellant booster rocket are implemented including the case when the nozzle plug opening is taken into account. The contribution of the thrust force components at the stage of bootstrap operation is assessed. The presence of the plug at the initial stage of the engine start leads to an abrupt change in the thrust and minor fluctuations, which are damped as the pressure in the combustion chamber rises.

Download file
Counter downloads: 144

Keywords

solid-propellant rocket engine, unsteady gas dynamics, supersonic jet, mathematical modeling, movable computational grids, Godunov's method, thrust

Authors

NameOrganizationE-mail
Kostyushin Kirill V.Tomsk State Universitykostushink@niipmm.tsu.ru
Всего: 1

References

Kostyushin K.V., Kotonogov V.A., Kagenov A.M., Tyryshkin I.M., Glazunov A.A., Eremin I.V., Zhiltsov K.N. The universal algorithm for solving the gas dynamics equations on the mesh with arbitrary number of cell faces // Journal of Physics Conference Series. 2018. 1145(1):012048. DOI: 10.1088/1742-6596/1145/1/012048.
Глазунов А.А., Кагенов А.М., Костюшин К.В., Еремин И.В., Котоногов В.А., Алигасанова К.Л. Математическое моделирование взаимодействия одиночной сверхзвуковой струи с преградами // Вестник Томского государственного университета. Математика и механика. 2020. № 63. C. 87-101. DOI: 10.17222/19988621/63/8.
Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: Физматлит, 2001. 607 c.
Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976. 400 с.
Kostyushin K.V., Eremin I.V., Kagenov A.M., Zhiltsov K.N., Tyryshkin I.M., Sereda M.S., Chervakova A.V. Method of gas flows calculation in solid propellant rocket engines taking into account the combustion of solid fuel charge // IOP Conf. Ser.: Mater. Sci. 2019. 597:012077. DOI: 10.1088/1757-899X/597/1/012077
Vasenin I.M., Krainov A.Yu., Lipanov A.M., and Shrager E.R. Method for direct numerical simulation of turbulent gas flows in curvilinear coordinates // Computational Mathematics and Mathematical Physics. 2015. V. 55(5). P. 883-890. DOI: 10.1134/S0965542515050176.
Vasenin I.M. Shrager E.R. Glazunov A.A. Krainov A.Yu. Krainov D.A. Modeling of the Process of Motion of a Scramjet in the Atmosphere // Russ. Phys. J. 2013. V. 56. P. 908-913. DOI: 10.1007/s11182-013-0117-2.
Волков К.Н., Дерюгин Ю.Н., Емельянов В.Н., Козелков А.С., Карпенко А.Г., Тетерина И.В. Разностные схемы в задачах газовой динамики на неструктурированных сетках. М.: Физматлит, 2015. 416 с.
Minkov L.L., Shrager E.R. and Kiryushkin A.E. Two Approaches for Simulating the Burning Surface in Gas Dynamics // Key Engineering Materials. 2016. V. 685. P. 114-118. DOI: 10.4028/www.scientific.net/KEM.685.114.
Липанов А.М., Дадикина С.Ю., Шумихин А.А., Королева М.Р., Карпов А.И. Численное моделирование внутрикамерных нестационарных турбулентных течений. Часть 1 // Вестник ЮУрГУ ММП. 2019. Т. 12, № 1. С. 32-43. DOI: 10.14529/mmp190103.
Ерохин Б.Т. Теория внутрикамерных процессов и проектирование РДТТ: Учебник для высших технических учебных заведений. М.: Машиностроение. 1991. 560 с.
Липанов А.М., Бобрышев В.П., Алиев А.В., Спиридонов Ф.Ф., Лисица В.Д. Численный эксперимент в теории РДТТ. Екатеринбург: Наука, 1994. 300 с.
Волков К.Н., Емельянов В.Н. Вычислительные технологии в задачах механики жидкости и газа. М.: Физматлит, 2012. 468 с.
Алиев А.В., Амарантов Г.И., Вахрушев А.В. Внутренняя баллистика РДТТ / под ред. А.М. Липанова, Ю.М. Милёхина. М.: Машиностроение, 2007. 504 с.
 Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 67. DOI: 10.17223/19988621/67/12

Numerical investigation of unsteady gasdynamic processes at the launch of solid-propellant rockets | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 67. DOI: 10.17223/19988621/67/12

Download full-text version
Counter downloads: 534