O The theory of a space brachistochrone | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 68. DOI: 10.17223/19988621/68/5

O The theory of a space brachistochrone

In this paper, a solution to the problem of the motion of a brachistochrone in the n-dimensional Euclidean space is firstly presented. The very first formulation of the problem in a two-dimensional case was proposed by J. Bernoulli in 1696. It represented an analytical description of the trajectory for the fastest rolling down under gravitational force only. Thereafter, a number of problems devoted to a brachistochrone were considered with account for gravitational forces, dry and viscous drag forces, and a possible variation in the mass of a moving body. Analytical solution to the formulated problem is presented in details by an example of the body moving along a brachistochrone in three-dimensional Cartesian coordinates. The obtained parametric solution is confirmed by a graphical interpretation of the calculated result. The formulated problem is solved for an ideal case when drag forces are neglected. If dry and viscous friction forces are taken into account, the plane shape of the brachistochrone remains the same, while the analysis of the solution becomes more complicated. When, for example, a side air flow is taken into account, the plane curve is replaced by a three-dimensional brachistochrone.

Download file
Counter downloads: 105

Keywords

three-dimensional brachistochrone, n-dimensional case, functional, extremal

Authors

NameOrganizationE-mail
Gladkov Sergey O.Moscow Aviation Institutesglad51@mail.ru
Bogdanova Sofiya B.Moscow Aviation Institutesonjaf@list.ru
Всего: 2

References

Гладков С.О., Богданова С.Б. Геометрический фазовый переход в задаче о брахистохроне // Ученые записки физического факультета МГУ. 2016. № 1. С. 161101-1-5.
Гладков С. О. О траектории движения тела, входящего в жидкость под произвольным углом // Ученые записки физического факультета МГУ. 2016. № 4. С. 164002-1-5.
Гладков С.О., Богданова С.Б. К теории движения тел с переменной массой // Вестник Томского государственного университета. Математика и механика. 2020. № 65. С. 83-91. DOI: 10.17223/19988621/65/6.
Denman Harry H. Remarks on brachistochrone - tautochrone problems // Amer. J. Phys. 1985. V. 53. P. 224-227.
Scarpello G.M. and Ritelli D. Planar brachistochrone of a particle attracted in vacuo by an infinite rod // New Zealand J. Math. 2007. V. 36. P. 241-252.
Goldstein H. and Bender C. Relativistic brachistochrone // J. Math. Phys. 1986. V. 27. N 2. P. 507-511.
Scarpello G.M. and Ritelli D. Relativistic brachistochrones under electric or gravitational uniform fields // Z. Angew. Math. Mech. 2006. V. 86. No. 9. P. 736-743.
Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М.: Наука, 1969. 424 с.
Гладков С.О., Богданова С.Б. К теории движения шарика по вращающейся брахистохроне с учетом сил трения // Ученые записки физического факультета МГУ. 2017. С. 172101-1-6.
Ландау Л.Д., Лифшиц Е.М. Механика. М.: Физматлит, 2004. 210 с.
 O The theory of a space brachistochrone | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 68. DOI: 10.17223/19988621/68/5

O The theory of a space brachistochrone | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 68. DOI: 10.17223/19988621/68/5

Download full-text version
Counter downloads: 223