Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 68. DOI: 10.17223/19988621/68/9

Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines

The paper presents a stationary equation for bending deformations of a hollow rod derived by means of variational calculus. Further, the authors introduce into consideration an inertial term as consistent with a standard procedure and obtain the wave equation for pipe bending vibrations. Applying the method of separation of variables, the resulting hyperbolic equation of vibrations is reduced to an ordinary fourth-order differential equation for a standing wave on the axial line of the pipe. Fundamental solutions to the latter equation are referred to as the Krylov functions, while the standing wave is represented as a linear combination of two independent Krylov functions. The solution to the obtained homogeneous equation is only found at certain values of characteristic parameters which are amounted to a countable set for each case of fixed ends of the pipeline segment. Thus, the whole frequency spectrum of the pipe bending vibrations is determined, and the main vibration mode is revealed for each case of fixed pipeline ends.

Download file
Counter downloads: 95

Keywords

pipeline segment, elastic wave, standing wave of an axial line, frequency spectrum, basic vibration mode

Authors

NameOrganizationE-mail
Lun-Fu Aleksandr V.Gazprom Transgaz Tomsk Ltda.lunfu@gtt.gazprom.ru
Bubenchikov Mikhail A.Tomsk State Universitymichael121@mail.ru
Jambaa SoninbayarMongolian University of Science and Technology; National University of Mongoliajsoninbayar@yahoo.com
Tsydypov Sevan G.Buryat State Universitysivan77@mail.ru
Всего: 4

References

Musaakhunova L.F., Igolkin A.A., Shabanov K.Y. The vibroacoustic characteristics research of the gas pipeline // Procedia Engineering. 2015. V. 106. P. 316-324. DOI: 10.1016/j.proeng. 2015.06.041.
Tian J., Yuan C., Wu C., Liu G., Yang J. The vibration analysis model of pipeline under the action of gas pressure pulsation coupling // Engineering Failure Analysis. 2016. V. 66. P. 328340. DOI: 10.1016/j.engfailanal.2016.05.017.
Mironova T.B., Prokofiev A.B., Sverbilov V.Y. The finite element technique for modeling of pipe system vibroacoustical characteristics // Procedia Engineering. 2017. V. 176. P. 681-688. DOI: 10.1016/j.proeng.2017.02.313.
Guo B., Song S., Ghalambor A., Lin T.R. Pipeline vibration and condition based maintenance // Design, Installation and Maintenance. 2014. P. 299-337. DOI: 10.1016/B978-0-12-397949- 0.00018-2.
Oh. S.W., Yoon D-B., Kim G.J., Bae J-H., Kim H.S. Acoustic Data condensation to enhance pipeline leak detection // Nuclear Engineering and Design. 2018. V. 327. P. 198-211. DOI: 10.1016/j.nucengdes.2017.12.006.
Ляв А. Математическая теория упругости. М.; Л.: Изд-во НКТП СССР, 1935. 675 с.
Стретт Дж.В. (лорд Рэлей). Теория звука. М.: ГИТТЛ, 1955. Т. 1. 503 с.
Тимошенко С.П., Янг Д.К., Уивер У. Колебания в инженерном деле. М.: Наука, 1967. 446 с.
Бабаков И.М. Теория колебаний. М.: ГИТТЛ, 1958. 628 с.
 Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 68. DOI: 10.17223/19988621/68/9

Determining frequencies of transverse vibrations for crossovers and dead ends of gas pipelines | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2020. № 68. DOI: 10.17223/19988621/68/9

Download full-text version
Counter downloads: 223