Numerical simulation of unstable safety valve modes
When designing pressure regulators, one needs to have a complete understanding of gas-dynamic processes. The numerical algorithm for three-dimensional gas-dynamic modeling of a full cycle of spring safety valve operation is proposed, which allows one to significantly reduce the computing time. Grid reconfiguration during CFD modeling is provided by interpolation procedure using previously calculated grids. Calculations show that gas-dynamic numerical simulation should account for a three-dimensional structure of the unsteady flow and the motion of the disc. These factors are taken into account when calculating full cycle of the valve on a coarse grid with the use of correction functions for the force and flow characteristics of the valve. The correction functions are calculated by the false transient method in the three-dimensional formulation. Cyclograms of the valve operation demonstrate satisfactory agreement of the experimental and numerical simulation results. The agreement in the variation of gas-dynamic forces with time is observed, except for the transitional regime before the valve starts to close. In the main work area, the calculated values of the reduced force belong to a confidence interval.
Keywords
safety valve,
numerical simulation,
dynamic process,
Godunov method,
MUSCL schemeAuthors
Raeder Tomas | Kalashnikov Izhevsk State Technical University | raeder.t@leser.com |
Tenenev Valentin A. | Kalashnikov Izhevsk State Technical University | v.tenenev@gmail.com |
Chernova Alena A. | Kalashnikov Izhevsk State Technical University | alicaaa@gmail.com |
Всего: 3
References
Beune A. Analysis of high-pressure safety valves. Eindhoven: Technische Universiteit Eindhoven, 2009. 134 p. DOI: 10.6100/IR652510.
Song X.G., Wang L.T., Park Y.C., Sun W.A. fluid-structure interaction analysis of the spring-loaded pressure safety valve during popping off // 14th International Conference on Pressure Vessel Technology. Procedia Engineering. 2015. V. 130. pp.87-94. DOI: 10.1016/j.proeng. 2015.12.178
Hos C.J., Champneys A.R., Paulc K., McNeelyc M. Dynamic behavior of direct spring loaded pressure relief valves in gas service: Model development, measurements and instability mechanisms // Journal of Loss Prevention in the Process Industries. 2014. V. 31. Р. 70-81.
Hos C.J., Champneys A.R., Paul K., McNeely M. Dynamic behaviour of direct spring loaded pressure relief valves: III valves in liquid service // Journal of Loss Prevention in the Process Industries. 2016. V. 43. P. 1-9. DOI: 10.1016/j.jlp.2016.03.030.
Dimitrov S., Komitovski M. Static and dynamic characteristics of direct operated pressure relief valves // Machine Design. 2013. V. 5. No. 2. P. 83-86.
Годунов С.К., Забродин А.В., Иванов М.Я., Крайко А.Н., Прокопов Г.П. Численное решение многомерных задач газовой динамики. М.: Наука, 1976. 400 c.
Сафронов А.В., Фомин Ю.В. Метод численного решения уравнений газодинамики с помощью соотношения на разрывах // Труды МФТИ. 2010. Т. 2. № 2. С. 137-148.
van Albada G.D., van Leer B., Roberts W.W.Jr. A comparative study of computational methods in cosmic gas dynamics // Astronomy and Astrophysics. 1982. V. 108. No. 1. P. 76-84.
Wesseling P. Principles of Computational Fluid Dynamics. Berlin: Springer-Verlag, 2001. 644 p.
Wesseling P., Segal A., and Kassel C.G.M. Computing flows on general three-dimensional nonsmooth staggered grids // Journal of Computational Physics. 1999. V. 149. P. 333-362.
Волков К.Н., Емельянов В.Н. Моделирование крупных вихрей в расчетах турбулентных течений. М.: Физматлит, 2008. 368 с.
Редер Т., Тененев В.А., Паклина Н.В. Исследование влияния величины начального зазора на динамику открывания предохранительного клапана // Интеллектуальные системы в производстве. 2018. Т.16. № 2. С. 28-40. DOI 10.22213/2410-9304-2018-2-28-40.