On parasasakian structures on five-dimensional Lie algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/4

On parasasakian structures on five-dimensional Lie algebras

Para-Sasakian structures on five-dimensional contact Lie algebras ɠ with nonzero center are considered. Such Lie algebras are central extensions of the four-dimensional para-Kähler Lie algebras (ɧ, ω). In this paper, a classification of five-dimensional para-Sasakian Lie algebras with a nontrivial center is proposed, based on the classification of para-Kähler structures J on symplectic Lie algebras (ɧ, ω). AMS Mathematical Subject Classification: 53C15, 53D10, 53C25, 53C50

Download file
Counter downloads: 120

Keywords

para-complex structure, left-invariant para-Kahler structure, para-contact structure, left-invariant para-Sasakian structures

Authors

NameOrganizationE-mail
Smolentsev Nikolay K.Kemerovo State Universitysmolennk@mail.ru
Shagabudinova Irina Y.Kemerovo State Universityshagabudinovai@mail.ru
Всего: 2

References

Алексеевский Д.В.,Медори К., Томассини А. Однородные пара-кэлеровы многообразия Эйнштейна // Успехи математических наук. 2009. Т. 64. Вып. 1(385). C. 3-50. URL: https://doi.org/10.4213/rm9262.
Calvaruso G. and Fino A. Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds // Int. J. Math. 2013. V. 24. 1250130. 28 p. URL: https://doi.org/ 10.1142/S0129167X12501303.
Cruceanu V., Fortuny P. and Gadea P.M. A survey on paracomplex geometry // Rocky Mount. J. Math. 1996. V. 26. P. 83-115.
Смоленцев Н.К. Левоинвариантные пара-сасакиевы структуры на группах Ли // Вестник Томского государственного университета. Математика и механика. 2019. № 62. С. 27-37. DOI: 10.17223/19988621/62/3.
Ovando G. Invariant complex structures on solvable real Lie groups // Manuscripta Math. 2000. V. 103. P. 19-30. URL: https://doi.org/10.1007/s002290070026.
Ovando G. Four-dimensional symplectic Lie algebras // Beitrage Algebra Geom. V. 47. 2006. No. 2. P. 419-434. URL: https://arxiv.org/abs/math/0407501.
Ovando G. Invariant pseudo-Kahler metrics in dimension four // J. Lie Theory. 2006. V. 16. P. 371-391.
Calvaruso G. Symplectic, complex and Kahler structures on four-dimensional generalized symmetric spaces // Diff. Geom. Appl. 2011. V. 29. P. 758-769. URL: https://doi.org/ 10.1016/j.difgeo.2011.08.004.
Calvaruso G. A complete classification of four-dimensional para-Kahler Lie algebras // Complex Manifolds. 2015. V. 2. Iss. 1. P. 733-748. DOI: 10.1515/coma-2015-0001.
Andrada A., Barberis M.L., Dotti I.G., Ovando G. Product structures on four-dimensional solvable Lie algebras // Homology, Homotopy and Applications. 2005. No. 7. P. 9-37. DOI: 10.4310/HHA.2005.v7.n1.a2.
Kobayashi S. and Nomizu K. Foundations of Differential Geometry. Vol. 1 and 2. New York; London: Interscience Publ., 1963.
Blair D.E. Contact Manifolds in Riemannian Geometry. Lecture Notes in Mathematics. Berlin; Heidelberg; New York: Springer-Verlag, 1976. ISBN 978-3-540-38154-9.
Diatta A. Left invariant contact structures on Lie groups // Diff. Geom. and its Appl. 2008. V. 26. Iss. 5. P. 544-552 (arXiv: math. DG/0403555 v2 24 Sep 2004). URL: https://doi.org/ 10.1016/j.difgeo.2008.04.001
Calvaruso G., Perrone A. Five-dimensional paracontact Lie algebras // Diff. Geom. and Appl. 2016. V. 45. P. 115-129. URL: https://doi.org/10.1016/j.difgeo.2016.01.001.
 On parasasakian structures on five-dimensional Lie algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/4

On parasasakian structures on five-dimensional Lie algebras | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 69. DOI: 10.17223/19988621/69/4

Download full-text version
Counter downloads: 363