Finite strains of nonlinear elastic anisotropic materials
Anisotropic materials with the symmetry of elastic properties inherent in crystals of cubic syngony are considered. Cubic materials are close to isotropic ones by their mechanical properties. For a cubic material, the elasticity tensor written in an arbitrary (laboratory) coordinate system, in the general case, has 21 non-zero components that are not independent. An experimental method is proposed for determining such a coordinate system, called canonical, in which a tensor of elastic properties includes only three nonzero independent constants. The nonlinear model of the mechanical behavior of cubic materials is developed, taking into account geometric and physical nonlinearities. The specific potential strain energy for a hyperelastic cubic material is written as a function of the tensor invariants, which are projections of the Cauchy-Green strain tensor into eigensubspaces of the cubic material. Expansions of elasticity tensors of the fourth and sixth ranks in tensor bases in eigensubspaces are determined for the cubic material. Relations between stresses and finite strains containing the second degree of deformations are obtained. The expressions for the stress tensor reflect the mutual influence of the processes occurring in various eigensubspaces of the material under consideration.
Keywords
anisotropy,
hyperelasticity,
finite strains,
cubic materials,
tensor bases,
invariantsAuthors
Sokolova Marina Yu. | Tula State University | m.u.sokolova@gmail.com |
Khristich Dmitriy V. | Tula State University | dmitrykhristich@rambler.ru |
Всего: 2
References
Сиротин Ю.И., Шаскольская М.П. Основы кристаллофизики. М.: Наука, 1979. 639 с.
Лехницкий С.Г. Теория упругости анизотропного тела. М.: Наука, 1977. 416 с.
Черных К.Ф. Введение в анизотропную упругость. М.: Наука, 1988. 192 с.
Newnham R.E. Properties of Materials: Anisotropy, Symmetry, Structure. New York: Oxford University Press, 2005. 391 p.
Xiao H. А new representation theorem for elastic constitutive equations of cubic crystals // Journal of Elasticity. 1999. V. 53. P. 37-45. DOI: 10.1023/A:1007591025837.
Paszkiewicz T., Wolski S. Elastic properties of cubic crystals: Every's versus Blackman's diagram // Journal of Physics: Conference Series. 2008. V. 104. 012038. DOI: 10.1088/1742-6596/104/1/012038.
Knowles K.M. The biaxial moduli of cubic materials subjected to an equi-biaxial elastic strain // Journal of Elasticity. 2016. V. 124. P. 1-25. DOI: 10.1007/s10659-015-9558-x.
Knowles K.M., Howie P.R. The directional dependence of elastic stiffness and compliance shear coefficients and shear moduli in cubic materials // Journal of Elasticity. 2015. V. 120. P. 87-108. DOI: 10.1007/s10659-014-9506-1.
Norris A. Poisson's Ratio in Cubic Materials // Proceedings: Mathematical, Physical and Engineering Sciences. 2006. V. 462. No. 2075. Р. 3385-3405. DOI: 10.1098/rspa.2006.1726.
Duffy T. Single-crystal elastic properties of minerals and related materials with cubic symmetry // American Mineralogist. 2018. V. 103. Iss. 6. P. 977-988. DOI: 10.2138/am-2018-6285.
Соколова М.Ю., Христич Д.В. Программа экспериментов по определению типа начальной упругой анизотропии материала // Прикладная механика и техническая физика. 2015. Т. 56. № 5. С. 205-213. DOI: 10.15372/PMTF20150519.
Wright T.W. Bootstrap elasticity III: minimal nonlinear constitutive representation for cubic materials // Journal of Elasticity. 2015. V. 120. No. 1. P. 109-119. DOI: 10.1007/s10659-014-9507-0.
Claiton J.D. Nonlinear Elastic and Inelastic Models for Shock Compression of Crystalline Solids. Springer, 2019. 452 p.
Kambouchev N., Fernandez J., Radovitzky R. A poly convex model for materials with cubic symmetry // Modelling and Simulation in Materials Science and Engineering. 2007. V. 15. No. 5. P. 451-468. DOI: 10.1088/0965-0393/15/5/006.
Kube C.N., Turner J.A. Estimates of Nonlinear Elastic Constants and Acoustic Nonlinearity Parameters for Textured Polycrystals // Journal of Elasticity. 2016. V. 122. No. 2. P. 157177. DOI: 10.1007/s10659-015-9538-1.
Маркин А.А., Соколова М.Ю. Термомеханика упругопластического деформирования. М.: ФИЗМАТЛИТ, 2013. 320 с.
Соколова М.Ю., Христич Д.В. О симметрии термоупругих свойств квазикристаллов // Прикладная математика и механика. 2014. Т. 78. Вып. 5. С. 728-734.
Козлов В.В., Маркин А.А. Апробация определяющих соотношений нелинейной теории упругости при осевом сдвиге полого цилиндра // Вестник Томского государственного университета. Математика и механика. 2020. № 63. С. 102-114. DOI: 10.17223/ 19988621/63/9
Рыхлевский Я. О законе Гука // Прикладная математика и механика. 1984. Т. 48. Вып. 3. С. 420-435.
Mehrabadi M.M., Cowin S.C. Eigentensors of linear anisotropic elastic materials // The Quarterly Journal of Mechanics and Applied Mathematics. 1991. V. 44. Iss. 2. P. 331. DOI: 10.1093/qjmam/44.2.331.
Остросаблин Н.И. Об уравнениях линейной теории упругости // Прикладная механика и техническая физика. 1992. Вып. 3. С. 131-140.