Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 70. DOI: 10.17223/19988621/70/10

Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants

Assuming unidirectional motion of compressed atmospheric air through a vertical cylindrical adsorbent with a fixed granular layer of the front-end purification unit adsorbent, the mathematical model for estimating the heterogeneity of a hydrodynamic velocity field in the radial and axial directions in a turbulent regime is proposed. The model is based on the boundary layer approximation of the Darcy - Brinkman - Forchheimer phenomenological equation. The steady-state flow at low permeability of the granular layer is identified using the collocation method, and the approximate analytical solution is obtained which justifies the applicability of an ideal displacement mode when describing the carrier medium motion. Numerical integration of a boundary value problem of the model equation using the finite-difference method with Richardson extrapolation confirms the conclusion validity. The structure of an accelerated turbulent flow having constant flow velocity in the input section shows that for small Forchheimer coefficients, the Darcy - Brinkman equation is used to obtain the analytical ratio for calculating the length of the initial hydrodynamic section. The proposed mathematical model for estimating the heterogeneity of the velocity field in adsorbers with a stationary dispersed layer is applicable for a laminar flow regime. Testing of this approach by assessing velocity field uniformity for a mass-produced front-end purification unit of air separation plants has shown its efficiency.

Download file
Counter downloads: 104

Keywords

granular adsorbent layer, velocity field heterogeneity, porosity, permeability, atmospheric air

Authors

NameOrganizationE-mail
Filimonova Olga N.N.E. Zhukovsky and Yu.A. Gagarin Air Force Academyolga270757@rambler.ru
Vorobyov Aleksandr A.N.E. Zhukovsky and Yu.A. Gagarin Air Force Academyaleksandr.vorobev.2012@bk.ru
Vikulin Andrey S.N.E. Zhukovsky and Yu.A. Gagarin Air Force Academymmiler5472@yandex.ru
Всего: 3

References

Singla P., Chowdhury K. Comparisons of thermodynamic and economic performances of cryogenic air separation plants designed for external and internal compression of oxygen !! Applied Thermal Engineering. 2019. V. 160. Article 114025. DOI: 10.17632!r3875vhijs.2.
Brigagao G.V., de Medeiros J.L., Araujo O.Q. A novel cryogenic vapor-recompression air separation unit integrated to oxyfuel combined-cycle gas-to-wire plant with carbon dioxide enhanced oil recovery ll Energy Conversion and Management. 2019. V. 189. P. 202-214. DOI: 10.1016lj.enconman.2019.03.088.
Suzuki M. Adsorption Engineering. Tokya: Kodansha Ltg., 1990. 278 p.
Nolan D.P. Handbook of fire and explosion protection engineering principles for oil, gas, chemical and related facilities. NY: William Andrew, 2014. 487 p.
Toth J. Adsorption: Theory, Modeling, and Analysis. NY: Marcel Dekker, Inc., 2001. 880 р.
Nield D.A., Bejan A. Convection in Porous Media. NY: Springer, 2006. 654 p.
Корнилов И.В., Петров Ю.Е., Сагадатов И.И., Тагиров И.Х., Япрынцев П.О. Автотехническое и электрогазовое обеспечение авиационных частей. Уфа: УГАТУ, 2016. 130 с.
Бумагин Г.И., Рогальский Е.И., Попов Л.В. Автомобильная многоцелевая воздухоразделительная установка АКДС-100 нового поколения ll Технические газы. 2008. № 1. С. 48-51.
Тарасова Е.Ю. Новые решения, высокая эффективность: опыт создания ВРУ КдАдАр-18l14 ll Технические газы. 2011. № 6. С. 2-8.
Архаров А.М. и др. Криогенные системы. Т.2. Основы проектирования аппаратов, установок и систем. М.: Машиностроение, 1999. 720 с.
Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: Наука, 1972. 721 с.
Lai T., Liu X., Xue S., Xu J., He M., Zhang Y. Extension of Ergun equation for the calculation of the flow resistance in porous media with higher porosity andopen-celled structure ll Applied Thermal Engineering. 2020. V. 173. Article 115262. DOI: 10.1016lj.applthermaleng. 2020.115262.
Alazmi B., Vafai K. Analysis of variable porosity, thermal dispersion, and local thermal nonequilibrium on free surface flows through porous media ll Journal of Heat Transfer. 2004. V. 126(3). P. 389-399. DOI: 10.1115l1.1723470.
Ряжских В.И., Коновалов Д.А., Слюсарев М.И., Дроздов И.Г. Анализ математической модели теплосъема с плоской поверхностью ламинарно движущимся хладагентом через сопряженную пористую среду ll Вестник ЮУрГУ. Серия: Математическое моделирование и программирование. 2016. Т. 2. № 3. С. 68-81.
Buhber T., Salamon D.A. Functional analysis. NY: American Mathematical Society, 2018. 482 p.
Коннор Дж., Бреббиа К. Метод конечных элементов в механике жидкости. Л.: Судостроение, 1979. 264 с.
Izadpanah M.R., Muller-Steinhagen H, Jamialahmadi M. Experimental and theoretical studies of convective heat transfer in a cylindrical porous medium // International Journal of Heat and Fluid Flow. 1998. V. 19. P. 629-635. DOI: 10.1016/S0142-727X(98)10035-8 22.
Снеддон И.Н. Преобразование Фурье. М.: ИЛ, 1955. 667 с.
Дидушинский Я. Основы проектирования каталитических реакторов. М.: Химия, 1972. 376 с.
Hsu C.T., Cheng P. Thermal dispersion in porous medium // Int. J. Heat Mass Transfer. 1990. V. 33. Iss. 8. P. 1587-1597. DOI: 10.1016/0017-9310(90)90015-M.
Ziolkowska L., Badowska I., Flejter B., Mieskowski Z. Wplyw wysokosci warstwy zloza na profil predkosci w rurze z wypelnieniem ziarnistym // Inzynieria chemiczna i procesowa. 1980. V. 1. No. 2. P. 393-405.
Newell R., Standish N. Velocity distribution in rectangular pached beds and non-ferrous blast furnaces // Metallurgical Transactions. 1973. V. 4. No. 8. P. 1851-1857.
Schwartz C.E., Smith J.M. Flow distribution in packed beds // Ind. and Eng. Chem. 1953. V. 45. No. 6. P. 1209-1218.
Пушное А., Балтренас П., Каган А., Загорские А. Аэродинамика воздухоочистных устройств с зернистым слоем. Вильнюс: Техника, 2010. 348 с.
 Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 70. DOI: 10.17223/19988621/70/10

Estimation of heterogeneity of the atmospheric air velocity field in adsorbers of front-end purification units for air separation plants | Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika – Tomsk State University Journal of Mathematics and Mechanics. 2021. № 70. DOI: 10.17223/19988621/70/10

Download full-text version
Counter downloads: 355